
 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
 

THESIS 
 

Approved for public release, distribution is unlimited. 

THz-IMAGING THROUGH-THE-WALL USING THE 
BORN AND RYTOV APPROXIMATION 

 
by 
 

Kwangmoon Lee 
 

December 2008 
 

 Thesis Advisor:   Brett Borden 
 Second Reader: Gamani Karunisiri 



THIS PAGE INTENTIONALLY LEFT BLANK 

 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
December 2008 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE   
    THz-Imaging Through-the-Wall using the Born and Rytov Approximation 
6. AUTHOR(S)      Kwangmoon  Lee 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy 
or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
        Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  
 

We investigated an inverse imaging problem by applying the Rytov approximation for Through-the-Wall 
Imaging using THz waves. In the beginning, we studied some properties of THz waves and the physical conditions 
for THz imaging in matter. Then we started with Maxwell’s equations to derive a model for the transmission of 
Green’s functions and used a Lippman-Schwinger integral equation and Rytov approximation to predict the scattered 
field. We applied the L-curve method for the selection of regularization parameters and then presented the 
reconstruction algorithm and illustrated the result with numerical simulations.  We also compare this result to the one 
obtained by the Born approximation.  

15. NUMBER OF 
PAGES  

101 

14. SUBJECT TERMS  
      Terahertz, Imaging, Born/Rytov approximation, Singular Value Decomposition  

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

THz-IMAGING THROUGH-THE-WALL USING THE BORN  
AND RYTOV APPROXIMATION 

 
Kwangmoon Lee 

Lieutenant, Korea Navy 
B.S., Mechanics., Korea Naval Academy, 1998 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN PHYSICS 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
December 2008 

 
 
 

Author:  Kwangmoon Lee 
 
 
 

Approved by:  Brett Borden 
Thesis Advisor 

 
 
 

Gamani Karunasiri 
Second Reader 

 
 
 

James Luscombe 
Chairman, Department of Physics 
 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 

We investigated an inverse imaging problem by applying the Rytov 

approximation for Through-the-Wall Imaging using THz waves. In the beginning, we 

studied some properties of THz waves and the physical conditions for THz imaging in 

matter. Then we started with Maxwell’s equations to derive a model for the transmission 

of Green’s functions and used a Lippman-Schwinger integral equation and Rytov 

approximation to predict the scattered field. We applied the L-curve method for the 

selection of regularization parameters, and then presented the reconstruction algorithm 

and illustrated the result with numerical simulations.  We also compared this result to the 

one obtained by the Born approximation.  



 vi

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii

TABLE OF CONTENTS 

I. INTRODUCTION........................................................................................................1 
A. BACKGROUND ..............................................................................................1 
B. MOTIVATION ................................................................................................2 
C. PROPERTIES OF TERAHERTZ FREQUENCIES ...................................4 
D. THESIS ORGANIZATION............................................................................5 

II. THE INVERSE PROBLEM .......................................................................................7 
A. REVISIT ILL-POSED PROBLEMS .............................................................7 
B. LEAST SQUARES SOLUTION BY SINGULAR VALUE 

DECOMPOSITION.........................................................................................9 
C. TRUNCATED SINGULAR VALUE DECOMPOSITION .......................12 
D. REGULARIZATION METHODS...............................................................13 

1. Regularization by Operator Correction ..........................................13 
2. Regularization by Data Correction ..................................................14 
3. Regularization by Data and Operator Correction..........................14 

E. L-CURVE METHOD ....................................................................................14 
F. APPROXIMATIONS TO THE WAVE EQUATION................................15 

1. Born Approximation..........................................................................15 
2. Rytov Approximation ........................................................................16 

III. ELECTROMAGNETIC WAVES IN MEDIA........................................................17 
A. MAXWELL’S EQUATIONS .......................................................................17 

1. Simplified Model ................................................................................18 
2. Properties of Frequency and Dispersion..........................................21 

B. THE SCALAR THEORY .............................................................................23 

IV. THE TRANSFER FUNCTION ................................................................................27 

V. THE ANGULAR SPECTRUM ................................................................................37 
A. TRANSFORM SPHERICAL WAVES........................................................37 
B. REFLECTIVITY OF MEDIA......................................................................39 
C. EVANESCENT WAVES ..............................................................................40 
D. MATERIAL ANALYSIS ..............................................................................42 

VI. INTEGRAL EQUATION .........................................................................................47 
A. WAVE PROPAGATION EQUATION .......................................................47 
B. THE FIRST BORN APPROXIMATION....................................................48 
C. THE FIRST RYTOV APPROXIMATION.................................................49 

VII. SIMULATION ...........................................................................................................53 
A. RECONSTRUCTION ALGORITHM.........................................................53 
B. MATLAB CODE IMPLEMENTATION ....................................................54 
C. SIMULATION RESULTS ............................................................................56 
D. SIGNAL TO NOISE RATIO........................................................................56 
E. TIKHONOV REGULARIZATION.............................................................58 



 viii

F. TRUNCATED SVD .......................................................................................60 

VIII. CONCLUSION ..........................................................................................................63 

APPENDIX A. SINGULAR VALUE DECOMPOSITION...............................................65 

APPENDIX B. GREEN’S FUNCTION ...............................................................................69 

APPENDIX C. FOURIER TRANSFORM IN 2-D .............................................................71 
1. Linear Theorem : ...............................................................................71 
2. Similarity Theorem............................................................................71 
3. Shift Theorem : ..................................................................................72 
4. Parseval’s Theorem : .........................................................................72 
5. Convolution Theorem : .....................................................................72 
6. Autocorrelation Theorem..................................................................72 

APPENDIX D. MATLAB CODES.......................................................................................73 

LIST OF REFERENCES......................................................................................................83 

INITIAL DISTRIBUTION LIST .........................................................................................85 

 



 ix

LIST OF FIGURES 

Figure 1. Electromagnetic spectrum[From 7] ...................................................................4 
Figure 2. Examples of terahertz pulses in (a) Time Domain and (b) Magnitude of 

Fourier Coefficients [From 4]............................................................................5 
Figure 3. Hilbert space and measurement space .............................................................10 
Figure 4. L-curve for Tikhonov Regularization [From 14].............................................15 
Figure 5. Wave propagating in a lossy medium[From 18]..............................................21 
Figure 6. Real and imaginary parts of the refractive index [From 19]............................23 
Figure 7. Point source emanating waves through a medium...........................................28 
Figure 8. Cross sectional view of the wave front ............................................................30 
Figure 9. The wave vector k

r
..........................................................................................38 

Figure 10. The wave vector ,i r tk k and k
r r r

.........................................................................41 
Figure 11. Reflection (polystyrene, quartz, glass).............................................................42 
Figure 12. Reflection (lophira, tile, sand) .........................................................................44 
Figure 13. Reflection (body fluid, skin) ............................................................................45 
Figure 14. Illustration of a scattering of volume RV  bounded by surface RS ...................48 
Figure 15. Amplitude of field scattered from 5 points using Born (a) and Rytov (b) 

approximations.................................................................................................55 
Figure 16. Differences between Born and Rytov approximations ....................................57 
Figure 17. Scattering points with Gaussian noise SNR=-20dB ........................................57 
Figure 18. Regularization parameter (a) and L-curve (b) .................................................58 
Figure 19. Tikhonov Regularization α =4.6 at SNR=-20dB ............................................59 

Figure 20. Tikhonov Regularization α =0.5 at SNR=-20dB ............................................59 
Figure 21. Singular value spectrum of transfer operator...................................................60 
Figure 22. TSVD Κ =0.34 at SNR=-20dB........................................................................61 

Figure 23. TSVD Κ =0.10 at SNR=-20dB........................................................................61 

Figure 24. TSVD Κ =100 at SNR=-20dB.........................................................................62 
 



 x

THIS PAGE INTENTIONALLY LEFT BLANK 



 xi

LIST OF TABLES 

Table 1. Conditions for Well-posed Problems.................................................................3 
Table 2. Index of refraction for common materials. ......................................................44 
 
 



 xii

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii

ACKNOWLEDGMENTS 

Life is a never ending challenge. Most of us are living a challenging life and 

making a better life. When we were born, at first we crawled and later we learned how to 

walk in spite of falling down. It has been a big challenge for me to study in a different 

language, abroad, and especially to study physics. Also, it is a great challenge to choose a 

thesis topic of “Through-the-Wall Imaging using THz”. I knew this would not be an easy 

task, but I chose it and tried to be confident with it. Hence, I have learned lots of things 

from this.  

I would like to thank the Korean government, which gave me a precious 

opportunity to study at NPS and to live a lovely life with my family. I want to thank my 

wife who always supported and encouraged me when I was in trouble. Also, I thank my 

two daughters. They have grown up without any serious health problems, and they have 

become accustomed to new living conditions and a new school and friends, etc.  

I especially want to thank my thesis advisor, Dr. Brett Borden, who gave me 

essential knowledge and guidance in this research. If not for his help, I could not have 

written this thesis. Also I want to thank my second reader, Dr. Gamani Karunisiri, who 

provided valuable insight into the problem. I want to thank LT Jerry Kim whose earlier 

thesis research provided a starting point for my research. 

 



 xiv

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1

I. INTRODUCTION  

The amazing ability of terahertz radiation to penetrate through materials allows 

for the nondestructive, noninvasive inspection of mail and packages in post offices, and 

luggage at airport security check points [1]. 

The term terahertz (THz) refers to radiation whose spectrum lies between the 

infrared and microwave bands with frequencies ranging from 0.1 to 10 THz, where 

1THz= 1210 Hz or, in units of wavelength, λ =3 mm  to 30 mμ . Until recently, this “THz 

gap” has been almost inaccessible due to the lack of efficient sources and detectors in this 

region [2]. But recently, sources and detectors for THz frequencies have become 

available and easier to use. Therefore, many applications of terahertz radiation, such as 

imaging and communications, are now appearing. Among these applications, a very 

important application (and the focus of much research) is imaging using THz radiation 

[3]. The study of this imaging is an interesting and attractive area for researchers. 

A. BACKGROUND 

Various THz imaging techniques have been developed since Hu and Nuss first 

demonstrated THz imaging in 1995 [4]. THz imaging applications are the focus of 

constantly growing interest. Because THz waves can provide great spatial resolution and 

can penetrate most dielectric materials, such as plastics, paper, and wood, there are many 

applications of THz imaging. A classical application of THz wave based remote sensing 

is content inspection of packages and envelopes. Recently, THz imaging has been used 

for medical and biological applications because it provides high quality images. Another 

application is real-time nondestructive testing, which includes testing for defects in 

plastic food and medicine packages. Also, there are a number of security applications for 

THz imaging: for example, Through-the-Wall Imaging (TWI), luggage inspection, and 

the detection, from a distance, of weapons or explosives hidden under clothing or 

briefcases.  
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B. MOTIVATION 

In the decade between 1996 and 2005, more than a half million servicemen were 

injured or killed in situations involving barricaded offenders, hostage-taking, and high-

risk entry [5]. Through-the-Wall Imaging (TWI) has been studied for saving soldier’s and 

officer’s lives. TWI technology can help soldiers to detect enemies hiding in a building, 

and, for this reason, TWI technology needs to evolve and improve. 

The armed forces personnel or police officers who experience operations on 

urbanized terrain may want equipment that can detect, identify, and localize enemies 

through a wall, and operate day and night in all weather conditions.  

Most imaging systems use bi-static or multi-static transmission, where the 

transmitter is on one end, and the receiver is on its opposite end. Mono-static systems, on 

the other hand, use transmitters and receivers that are in the same location. Mono-static 

imaging systems rely on the back-scattered field. Through-the-wall imaging is more 

difficult and challenging than any other back scattering method because of the general 

variability of wall construction. In this thesis, we will concentrate on mono-static imaging 

techniques. 

There are two basic problems in ray-scattering. The first one is the direct 

scattering problem, which predicts how the rays scatter from a known object. The second 

is the inverse scattering problem, which attempts to recover the original object from the 

blurred and corrupted measurements of the scattered field. The inverse scattering problem 

is one of determining the characteristics of an object from measurement data of radiation 

or particles scattered from the object. Also, most inverse problems are ill-posed. X-ray, 

Tomography, and ultra sound imaging are good examples of ill-posed inverse problems. 

Let’s look at the difference between the direct problem and the inverse problem. 

The forward problem can be expressed as 

                                           ( )D A f=                                                         (1.1) 

in which, we denote the data by MD∈� , the object by Nf ∈� and the operator acting 

between two spaces containing D  and f  by A . ( N  and M  denote the dimensions of, 
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respectively, the object and data spaces and, in general, N M≠ .) So the direct problem 

predicts the data ( D ) from the object ( f ). On the other hand, the inverse problem is 

expressed as  

                                                       1( )f A D−=                                                        (1.2) 

and solves for the object ( f ) from the data ( D ). This equation looks easy to solve, but 

real-world inverse problems are typically much more complicated.  

Now let’s look at the inverse problem a little bit deeper. If we want to accurately 

map objects to data, we must also consider the measurement errors. The difference 

between the actual measurement data ( D ) and the real data ( D ) is denoted by noise 

n D D= − , and the scattering problem can be more accurately expressed by 

                                              ( )D A f n= +                                                      (1.3) 

The object and data functions are conveniently considered as belonging to Hilbert 

spaces. In equation (1.3), A  is an operator from one Hilbert space to the other. Hilbert 

space allows simple geometric concepts like projection onto fewer dimensional spaces 

and loss of information. 

Inverse problems are almost always ill-posed problems. J. Hadamard formalized 

the concept of well-posedness for equations of the form (1.3) [6]. Any equation that does 

not satisfy all three conditions is called ill-posed, and a method for solving this problem 

approximately is called a regularization method. 

 

1 Existence There exists a solution to the problem 

2 Uniqueness There is at most one solution to the problem 

3 Stability The solution depends continuously on the data 

Table 1.   Conditions for Well-posed Problems. 
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C. PROPERTIES OF TERAHERTZ FREQUENCIES 

The term “Terahertz” is applied to broadband pulsed electromagnetic radiation 

with a spectrum that falls between the infrared and microwave bands ranging from 0.1 to 

10 THz [7]. The wavelength in this region ranges from 3 mm  to 30 mμ  (as shown in 

figure 1). These are short wavelengths, and they have high resolution compared to other 

radio frequencies [2]. There are several distinct advantages of THz waves. The first is 

that most chemical substances possess characteristic absorption features in the THz range. 

This property enables us to detect illegal chemicals, even when they are sealed inside a 

packet or clothing. The second advantage is material transmission properties. Most non-

conducting materials such as plastics, paper, wood, and ceramics are totally or partially 

transparent in the THz range. The third advantage is that the radiation is non-ionizing and 

has relatively low energies compared to X-rays; therefore, we don’t have to be concerned 

about the safety of THz imaging. 

In this thesis, we will use THz pulses for imaging. Figure 2(a) shows examples of 

THz pulses transmitted through nylon. When a THz pulse interacts with an object, it 

experiences a delay, an attenuation, and a broadening, as the different component 

frequencies are phase shifted, absorbed, reflected, and scattered. Figure 2(b) shows the 

power spectrum that the pulse frequency content is centered around 1THz (note that the 

higher frequency content is attenuated more than the lower frequencies by nylon). 

 

Figure 1.   Electromagnetic spectrum[From 7] 
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Figure 2.   Examples of terahertz pulses in (a) Time Domain and (b) Magnitude of 
Fourier Coefficients [From 4] 

For the convenience of modeling, we assume that the wall that we want to see 

through is a linear, homogeneous, and isotropic dielectric. We know THz frequencies 

have good penetration for dry materials, but a spectral cut-off above 3 THz will be caused 

by absorption from water vapor in the THz beam path [8]. So we are not generally 

interested in frequencies over 3 THz. We also need to consider the object that we want to 

image. The reflection from the object depends on the object properties. For example, 

metallic materials reflect perfectly, but skin or water absorbs THz rays, so we can’t get 

significant reflected pulses. Therefore, we should be careful to choose frequencies that 

balance between the penetration of medium and the reflection of the object.  

D. THESIS ORGANIZATION 

This thesis uses Born and Rytov approximations to model measured scattered 

fields from objects located behind walls. 
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Chapter II introduces the concept of inverse problems, including ill-posed 

problems, singular value decomposition, and regularization methods. The Born and 

Rytov approximations are discussed as well. 

Chapter III provides some properties of electromagnetic waves in media and 

restricts our model system to a real situation. A scalar theory is introduced for use in the 

succeeding chapters. 

Chapter IV develops the transfer function of the media. This chapter describes the 

mathematical approach and derives Green’s functions in different regions. 

Chapter V examines reflectives of media and evanescent waves. It also examines 

materials with reflectivity. 

Chapter VI derives a wave equation in the specified medium and the scattered 

fields by applying the Born and Rytov approximations.  

Chapter VII provides algorithms and simulations (with noise) by applying 

Tikhonov regularization and Truncated Singular Value Decomposition regularization 

schemes. 

Finally, Chapter VIII gives a final summary conclusion, comparing the simulation 

results and providing suggestions for future work. 
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II. THE INVERSE PROBLEM 

This chapter will introduce ill-posed problems and regularization solution 

methods more deeply. Regularization methods are used to mitigate noise effects in the 

data or the operator. Three widely used regularization techniques are Tikhonov 

regularization, Truncated Singular Value Decomposition, and regularizing iterative 

methods. In this thesis, we will use the Tikhonov regularization method and the 

Truncated SVD method. We will confine ourselves to linear equations with compact 

operators in Hilbert space and use the Singular Value Decomposition for our 

reconstruction algorithm design. 

A. REVISIT ILL-POSED PROBLEMS  

We want to get images using electromagnetic frequencies. So there is no way to 

avoid the inverse problem. The very first equation we need is a Lippman-Schwinger 

equation [9]. 

3( ) ( , ) ( )( ( ) ( ))scatt k inc scattD
x G x x x x x d xψ ρ ψ ψ′ ′ ′ ′ ′= +∫∫∫                   (2.1) 

We denote: 

• ( , )kG x x′  is Green’s function which satisfies the wave equation with an 

impulsive source term 

• ( )xρ ′  is a source factor determined by the index of refraction of the 

scatterer 

• ( )xψ  is an electric field, ( )inc xψ  is the incident field, and ( )scatt xψ  is 

the scattered field 

Equation (2.1) is derived from the reduced scalar wave equation 

2 2 2( ) ( ) ( ) 0x k n x xψ ψ∇ + =                                            (2.2) 

where ( )n x  is the index of refraction and k  is the wave number. 
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In this thesis, we ignore multiple scattering. Because we assume multiple 

scattering terms are very small in comparison to primary scattering, terms we can rewrite 

equation (2.1) as 

3( ) ( , ) ( ) ( )scatt k incD
x G x x x x d xψ ρ ψ′ ′ ′ ′= ∫∫∫                                 (2.3) 

To get images of objects, we have to estimate ( )xρ (which defines the “image”), 

but there are some problems. The main problem is that we can never obtain data for all 

points ( )x  and at all frequencies ( )ω . The other problem is that the measurements are 

always accompanied by noise. If we consider these problems, we can make a more 

complete measurement model and express equation (2.3) in matrix form. To perform this 

discritization, we break the integral in equation (2.3) interval [ ]x a b∈  into M  parts and 

[ ]x c d∈  into N  parts. Then the integral equation becomes 

, 1 2( ) ( ) ( ) ,
b

i i Na
x s f s ds d x a s b c x x x dΚ = ≤ ≤ ≤ < < < ≤∫ "                 (2.4) 

where operator Κ  is defined as the kernel which operates on the object f X∈  to 

produce the measurement d Y∈ . We have simplified equation (2.3) into a one 

dimensional case and changed notations to better understand this measurement system.  

Where, 

• The measurement at position ix  : ( ) ( )scatt i ix d xψ ⇒  

• The “kernel” : ( , ) ( , )k iG x x x s′ ⇒ Κ  

• The “object” function : ( ) ( )x f sρ ′ ⇒  

Then we can rewrite equation (2.4) in matrix form (with noise included)as 

d f n= Κ +                                                        (2.5) 

where 



 9

1, 1, 1,1

2, 2, 2,2

, , ,

( ) ( 2 ) ( )( )
( ) ( 2 ) ( )( )

,

( ) ( 2 ) ( )( ) N N NN

x a s x a s x a M sd x
x a s x a s x a M sd x

d s

x a s x a s x a M sd x

Κ +Δ Κ + Δ Κ + Δ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ Κ + Δ Κ + Δ Κ + Δ⎢ ⎥⎢ ⎥= Κ = Δ
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ Κ + Δ Κ + Δ Κ + Δ⎣ ⎦ ⎣ ⎦

"
"

# # % ##
"

 

1

2

( )( )
( )( 2 )

,

( )( ) N

n xf a s
n xf a s

f and n

n xf a M s

+ Δ ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥+ Δ ⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥+ Δ⎣ ⎦ ⎣ ⎦

##
                                                              (2.6) 

and Nd ∈\  and Mf ∈\  are vectors. 

Let’s take a close look at the dimension of the measurement space and the object 

space. The measurement space has dimension N , and the object space has dimension M . 

This reflects the number N  of the discrete measurements and the number N  defining the 

resolution with which f  can be estimated. Normally the object dimension M  is greater 

than the measurement of dimension N . Now, equation (2.5) can be used to get f  by 

defining an inverse 1−Κ . However, the noise can alter the measurement space and lead to 

an unstable estimate of 1f d−= Κ . Equation (2.5) is also often an over-determined system, 

which means there are more equations than unknowns, and we can estimate f  by least-

squares. Therefore, we have to figure out an over-determined system to get solutions 

close to the real (discrete) values. We will deal with some methods to get stable solutions 

in section D. 

B. LEAST SQUARES SOLUTION BY SINGULAR VALUE 
DECOMPOSITION 

We consider d  to be a vector with components ( )i id d x= . Normally, the vector 

of measurements d  in equation (2.5) will not lie exactly in the measurement space 

Y (because of noise). Because d Y∈  only if the noise vector n Y∈ and f YΚ ∈ . But n  is  
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Figure 3.   Hilbert space and measurement space 

independent of the operator Κ , and the object vector f  may have components in 

measurement space or in null space. So a possible “best object” f�  will minimize the 

distance d f−Κ . We denote the least squares solution to equation as 

arg minf d f= −Κ�                                                (2.7) 

From Figure 3 we can get the solution to equation (2.7). The vector fΚ  lies in 

measurement space Y . When f PΚ =� , fΚ gets the closest distance to d . The vector 

d P d f− = −Κ�  is orthogonal to the measurement space Y  and all vectors of the form yΚ  

in measurement space Y . Then we can get the normal equations by [10] 

T Tf dΚ Κ = Κ                                                     (2.8) 

f  is the least square solution to equation (2.8). Since the matrix T M M×Κ Κ∈�  is square 

we can write 

1( )T Tf d−= Κ Κ Κ                                                  (2.9) 

f  is exactly what we want. In order to get f , we have to compute 1( )T T−Κ Κ Κ . But this 

can be painful to invert with large N  and M . So we want to use another method, 

singular value decomposition, to get f . 

f  f f null space−Κ ∈  

d f n= Κ +  

d P null space− ∈  

P
n

fΚ  

Measurement space  
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We would like to employ simple linear algebra to build matrices of the form 1( )T T−Κ Κ Κ . 

Consider a matrix A  that is square ( )M M×  with je  an eigenvector, jλ  an eigenvalue. 

We can transform the matrix A  in terms of the matrices T
i ie e , formed from the set of 

vectors { }ie , using the Spectral Theorem which states that A  can be written with as 

1

1

M
T T

i i i
i

A U U U U e eλ−

=

= Λ = Λ =∑                                  (2.10) 

where U  is the matrix with the eigenvectors of A  on its columns and Λ  is the matrix 

with the eigenvalues of A  along its diagonal. 

We assume { }ie is an orthonomal basis of M� , and so we can represent an 

M dimensional vector y  in terms of ie  

1 1
( )

M M
T
i i i i

i i
y e y e y e

= =

= =∑ ∑                                             (2.11) 

where T
i iy e y=  is the component of the vector y  in the basis. Consequently, 

1 1 1

M M M
T

i i i i i i i i
i i i

x Ay e e y y e x eλ λ
= = =

= = = =∑ ∑ ∑                                (2.12) 

This is representation of x Ay=  in terms of the basis { }ie . 

Let’s adjust this result for the matrix 1( )T T−Κ Κ Κ . Suppose { }je  are the eigenvectors of 

TΚ Κ . Then  

1 1 1 1( ) ( )T TU U U U− − − −Κ Κ = Λ = Λ                                     (2.13) 

Multiply by TΚ  on the right of both sides 
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1 1 1

1
1 2

1 1 1

2 2 2

( ) ( )

0 0 ˆ
0 0 ˆ

0 0 ˆ
T

T T T T T

T

m

T

T

T
M M M

D V

T

U U U U

U e e e

e
e

U

e

UDV

σ λ
σ λ

σ λ

− − −

−

Κ Κ Κ = Λ Κ = Λ Κ

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥= Λ Κ Κ Κ⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥=
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

=

# # #
…

# # #

" " "
" " "

# # % # # # #
" " "��������������	�������������
 ������	�����


          (2.14) 

We define i ieσ ≡ Κ  and 
1

1
0ˆ

0 0
i i i

i
i

e if
e

if
σ σ

σ
σ

−⎧ Κ ≠
≡ = ⎨

=⎩
 

Now multiply both sides of equation (2.9) by Κ  so that 

1( )T Tf d P−Κ = Κ Κ Κ Κ =                                        (2.15) 

P  is the projection of the measurement vector onto measurement space. Therefore, 
1( )T T−Κ Κ Κ Κ  is a projection matrix mapping d  to its components in measurement space. 

We will use this projection matrix to get more accurate data using regularization 

techniques in the following section. 

C. TRUNCATED SINGULAR VALUE DECOMPOSITION 

To obtain a better estimate of the least square solution, the truncated singular 

value decomposition solution is often used. This method truncates the SVD 

representation to reduce the effect of noise contamination. Just select one small threshold 

value K  and compare this with singular values iλ . If iλ>K , then we replace the 1 iλ  

in D  by 0. In this thesis, using the plot of singular values, we will find the critical point 

where the singular values change steeply and will truncate at that point [11] (see Figure 

21). 
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D. REGULARIZATION METHODS 

Since our model is linear and ill-posed, the inverse image is under-determined, 

and we will get small singular values of K. The problem is that K depends on our model 

of the measurement process and is not completely known. So we get singular values with 

a slight imprecision. Now we introduce regularization methods to overcome the problems 

associated with the small singular values that lead to reconstruction instability. 

Regularization is important for solving inverse problems, because the output of least 

squares is affected by data and rounding errors.  Therefore we would like to introduce 

regularization methods to reduce these errors. But there is a trade-off between the 

regularized output and the original sets of data. If the regularization is too crude, the 

regularized solution does not fit the given data, and the residual error r d f= −Κ  is 

unnecessarily large. If the regularization is too small, the fit will be good, but data noise 

effects will be larger.  

There are also some regularization methods that employ operator or data 

correction [12]. 

1. Regularization by Operator Correction 

Let’s model the problem by mapping A  as 

, ,Ax d x X d Y= ∈ ∈                                           (2.16) 

The equation (2.16) is said to be an ill-posed problem, if it does not meet one of the 

conditions in table I. If we want to transform an ill-posed problem into a well-posed 

problem by approximation of the equation, then we have to choose a mapping method. 

            The regularization of equation (2.16) consists of a substitution of the operator A  

by A� . Let A X Y⋅ →�  be an operator such that 

Ax d=�                                                         (2.17) 

This is the idea behind the well known Tikhonov regularization. 

 



 14

2. Regularization by Data Correction 

Let K Y A⋅ →  be a continuous operator such that 

then 

, ,Ax Kd x X d Y= ∈ ∈                                          (2.18) 

is well-posed and called as regularization by data correction. 

3. Regularization by Data and Operator Correction 

The last method of regularizations is a combination of both previous methods. Let 

A X Y⋅ →�  be an operator and K Y Y⋅ → a continuous mapping such that 

, ,Ax Kd x X d Y= ∈ ∈�                                          (2.19) 

Tikhonov regularization is also a well known method of this kind of regularization. 

E. L-CURVE METHOD 

Since the quality of the regularized solution is controlled by the regularization 

parameter for example, the threshold parameter K  used in truncated SVD regularization 

[13], we have to choose the optimal parameter to get a “best” image. There are various 

methods for the selection of regularization parameters, including the Discrepancy 

Principle, Generalized Cross Validation, and L-curve. The L-curve method applies a log-

log plot of the regularized solution against the squared norm of the regularized residual 

for a range of values of regularization parameters [13] and selects the corner as the point 

of maximum curvature in the L-curve plot (see Figure 4). 

There are two main approaches used in the L-curve method. The first approach 

considers both the residual norm and the solution norm. The second approach considers 

the value of the maximum curvature. Like other methods, the L-curve method has its 

merits and limitations. The merits of L-curve are that it’s robust and can treat 

perturbation caused by correlation noise. On the other hand, the L-curve method is 
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limited, because it is not convergent [14], i.e., since singular values are getting close to 0 

but not exactly 0 as increasing index of singular values, we can’t get the value which 

satisfies the norm is 0. 

 

Figure 4.   L-curve for Tikhonov Regularization [From 14] 

F. APPROXIMATIONS TO THE WAVE EQUATION 

In the case of electromagnetic scattering problems, we need to approximate the 

unknown internal field by a known distribution in order to linearize the problem. The 

Born and Rytov approximations are widely used to simplify electromagnetic scattering 

problems. In this thesis we will derive reconstruction formulas under the Rytov 

approximation and compare with the Born approximation. 

1. Born Approximation 

The first Born approximation was introduced by Max Born in 1925, in order to 

solve problems concerning the scattering of atomic particles [7]. The Born approximation 

is obtained by expressing the total wave field as the sum of incident field plus scattered 

field: 

( ) ( ) ( )i sr r rψ ψ ψ= +                                              (2.20) 
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This approximation assumes that scattered fields inside scatterers are negligible 

compared to the background and the normal fields. The first-order Born approximation is 

good only if the scattered field is much smaller than the incident field. 

2. Rytov Approximation 

The Rytov approximation was discovered in 1937 by Rytov, who was analyzing 

the diffraction of light by sound waves. This approximation was later applied by 

Obukhov to describe the propagation of electromagnetic waves in random media [15]. 

The Rytov approximation is based on expressing the total field as a complex phase, 

which is the sum of incident phases plus scattered phases: 

( ) ( )( )( ) i sr rrr e eφ φφψ += =                                            (2.21) 

The condition for the applicability of this approximation is that the phase of the scattered 

field varies slowly, relative to one wavelength. So the size of target is less critical in the 

Rytov approximation. 
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III. ELECTROMAGNETIC WAVES IN MEDIA 

It is difficult to explain electric fields and magnetic fields, which are cross-

coupled, without the Maxwell’s equations. Maxwell’s equations were established by 

James Clerk Maxwell by 1864 and experimentally verified by Heinrich Hertz in 1888 

[16]. Since then these equations have been applied in a variety of areas such as optics, 

microwaves, antennas, radar, and communications. In this chapter we will investigate 

Maxwell’s equations in media and derive the associated wave equations. 

A. MAXWELL’S EQUATIONS 

Maxwell’s equations are comprised of Gauss’ law for the electric field, the 

observation that there are no magnetic monopoles, Ampere’s law, including the 

displacement current D
t

∂
∂

, and Faraday’s law of induction in differential form. They can 

be written as 

0
D
B

BE
t

DH J
t

ρ∇ ⋅ =
∇ ⋅ =

∂
∇× = −

∂
∂

∇× = +
∂

                                                   (3.1) 

where D and B are the electric and magnetic flux intensities, and E  and H are the 

electric and magnetic field intensities, J  is electric current density, and ρ  is volume 

charge density. In reality, there are two more things we have to consider for Maxwell’s 

equations. These are P , and M , called induced polarization and magnetization 

respectively. The associated constitutive relations are expressed as 

0D E P= +e                                                      (3.2)                    

0 ( )B H Mμ= +                                                  (3.3) 
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Using equations (3.2) and (3.3), we can rewrite Maxwell’s equations in terms of E and B .  

0

0 0 0

1 ( )

0

E P

B
BE
t

E PB J M
t t

ρ

μ μ

∇⋅ = −∇ ⋅

∇ ⋅ =
∂

∇× = −
∂
∂ ∂⎡ ⎤∇× = + + +∇×⎢ ⎥∂ ∂⎣ ⎦

e

e

                           (3.4) 

where 0μ  and 0e  are the permeability and permittivity in free space, respectively. The 

speed of light ( c ) and characteristic impedance ( 0η ) of a vacuum are expressed using 0μ  

and 0e as 

0
0

00 0

1 ,c μη
μ

= =
ee

                                         (3.5) 

1. Simplified Model 

Electromagnetic fields behave differently in the presence of media. For Through 

the Wall Imaging using electromagnetic waves, we will confine our attention to materials 

obeying a linear model. Materials used for constructing walls include wood, concrete, 

and iron-beams. These materials typically have anisotropic permittivity. Anisotropic is an 

inherent property of the atomic and molecular structure of the dielectric [17]. So in 

anisotropic materials, permittivity depends on its direction and the linear constitutive 

relation can be written in matrix form as 

x xx xy xz x

y yx yy yz y

z zx zy zz z

D E
D E
D E

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

e e e
e e e
e e e

                                        (3.6) 

In general, the field vector E  is no longer parallel to D . But we can simplify our model 

by using the principal axis system: We consider homogeneous and linear materials so that 

the permittivity is independent of position. Then the permittivity tensor can be expressed 

with six elements as 



 19

( )
xx xy xz

xy yy yz

xz yz zz

tensor
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

e e e
e e e e

e e e
                                          (3.7) 

Since this matrix is symmetric, its eigenvectors are orthogonal. If we choose a 

coordinate system which is aligned to these eigenvectors, we can rewrite the permittivity 

tensor as a diagonal tensor determined by its eigenvalues. Then equation (3.7) becomes 

0 0
( ) 0 0

0 0

xx

yy

zz

tensor
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

e
e e

e
                                          (3.8) 

Let’s investigate solutions to the Maxwell’s equations for source free 

homogeneous isotropic media. Here, 0J ρ= =  and Maxwell’s equations (3.4) become 

0, 0,

0, 0

BE E
t

EB B
t

μ

∂
∇ ⋅ = ∇× + =

∂
∂

∇ ⋅ = ∇× − =
∂

e
                                   (3.9) 

To derive the wave equation we first take the curl of the second of equation (3.9)  

( ) 0BE
t

∂
∇× ∇× +∇× =

∂
                                         (3.10) 

( ) ( ) 0E B
t
∂

∇× ∇× + ∇× =
∂

                                      (3.11) 

and use the identity of 2 2( ) ( )E E E E∇× ∇× = ∇ ∇⋅ −∇ = −∇ , since we assume a charge 

free and homogeneous region that means 0E∇⋅ = , and we obtain 

2 ( ) 0E B
t
∂

−∇ + ∇× =
∂

                                          (3.12) 

Now take the partial derivative with respect to t  of the forth of equation (3.9) 

2 2

2 20 ( )B E EB
t t t t

μ μ∂ ∂ ∂ ∂
∇× − = ⇒ ∇× =

∂ ∂ ∂ ∂
e e                   (3.13) 

and substitute this into equation (3.12) to obtain 
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2
2

2 0EE
t

μ ∂
∇ − =

∂
e                                             (3.14) 

The plane wave solutions to equation (3.14) can be written as 

( )
0( , ) i k r tE r t E e ω⋅ −=

G GG G
                                              (3.15) 

Substituting equation (3.15) into equation (3.14) we find the following equation 

2 2k ω μ= e                                                    (3.16) 

This is called as the dispersion relation. We can easily find the phase velocity as  

1kω μ= e                                                   (3.17) 

For conductive materials with permittivity iσ ωe+ , the wave number is complex and 

written as [16] 

1 2

(1 )
2

R Ik k ik

i iσ ωμσω μ
ω

= +

⎡ ⎤ = +⎢ ⎥⎣ ⎦
� e

e
                             (3.18) 

Then the penetration depth is 

1 2
p

I

d
k ωμσ

= =                                                (3.19) 

For a wave propagating in the ẑ+  direction, we have z dependence given by 

R Iik z ik zikze e− −− =                                                   (3.20) 

 

This wave attenuates exponentially in the same direction that it propagates. Figure 

5 shows a wave propagating in a lossy medium. 

For a highly conducting medium with 
1 σ

ω
�

e , the penetration depth is a very 

small. So the waves will not be able to penetrate conductive materials. Therefore we 

ignore highly conductive materials in this thesis. 
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Figure 5.   Wave propagating in a lossy medium[From 18] 

2. Properties of Frequency and Dispersion 

When the electric field is applied to a dielectric, the electric field tends to separate 

the electron from the positively charged nucleus, and this creates an electric dipole 

moment. Moreover, the dipole moment contributes to the electric flux density so that 

 0 0 (1 ( ))D E P E Eχ ω ω= + = + =e e e( )                                 (3.21) 

where ( )χ ω  is susceptibility. From equation (3.21) we can see the permittivity is 

changed because of the dipole moment. The polarization of a medium with refractive 

index n  is 

0P Eχ=
r r

e                                                      (3.22) 

and the susceptibility is expressed as [16] 

2

2 2
0 0( )

nq
m i

χ
ω ω γ

=
− −e

                                          (3.23) 



 22

where 1γ τ= , which is a measure of the rate of collisions per unit time. Rationalizing 

Equation (3.23) as  

( )
( )

2 2 2
0

22 2 2 2
0 0

nq i

m

ω ω ωγ
χ

ω ω ω γ

⎡ ⎤− +⎣ ⎦=
⎡ ⎤− +⎢ ⎥⎣ ⎦

e
                                     (3.24) 

and substituting equation (3.24) into equation (3.21), we get the permittivity as 

( )
( ) ( )

2 2 2 2
0

0 2 22 2 2 2 2 2 2 2
0 0

nq inq

m m

ω ω ωγ

ω ω ω γ ω ω ω γ

−
= + +

⎡ ⎤ ⎡ ⎤− + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

e e                   (3.25) 

When ω  is not close to 0ω , the imaginary term will be much smaller than the real term. 

This means e is approximately real valued when ω  is not very near resonance. When not 

close to a resonance, the deviation of the refractive index from unity is 

( )
2

2 22 2
00 0

1 1
2

nq in
m

ωγ
ω ωω ω

⎛ ⎞
− +⎜ ⎟−− ⎝ ⎠

�
e

                                (3.26) 

From equation (3.26) the real part of n  represents dispersion and the imaginary part 

represents absorption. Figure 6 shows us that around the resonant frequency 0ω , the real 

part of n  behaves in a strange manner and drops rapidly with frequency, and the material 

absorption occurs quite high. So we have to avoid choosing a radiation frequency that is 

in resonance with the dielectric. 

To make our model system more numerically tractable, we need more 

assumptions. Dispersive media have values of ,μ e and σ  that depend on frequency. As 

a result, the wave velocity is generally frequency-dependent [18]. So, dispersive media 

have frequency-dependent constitutive laws; this means waves of different frequencies 

propagate with different velocities. For dispersive media, we need lots of information 

about different materials. The analysis is complex and unnecessary. So we will not 

consider highly dispersive media in this thesis. 
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Figure 6.   Real and imaginary parts of the refractive index [From 19] 

In general, the velocity of the envelope of any modulated sinusoid is the group 

velocity gv  which is the speed at which energy and information travel [18]. 

1

g
kv
ω

−∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
                                                   (3.27) 

For these reasons, our model assumes that the media have low conductivity and are non-

dispersive. 

B. THE SCALAR THEORY 

In the previous section, we derived the vector wave equation (3.14). Also, we 

restricted our model to a dielectric medium that is linear, homogeneous, isotropic, and 

non-dispersive. If the medium is just like that, we can rewrite the wave equation for the 

electric field as 

2 2
2

2 2 0n
c t

∂
∇ − =

∂
EE                                             (3.28) 

Identically, we get the same equation for the magnetic field as 

2 2
2

2 2 0n
c t

∂
∇ − =

∂
HH                                           (3.29) 

Since these are vector equations, we will get 6 equations with 6 components: , ,x y zE E E  

and , ,x y zH H H . But fortunately, we can make these equations into a single scalar wave 
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equation because under our model restriction, all vector components of E  and H  are 

identical. A single wave equation becomes 

2 2
2

2 2

( , )( , ) 0n x tx t
c t

ψψ ∂
∇ + =

∂
                                   (3.30) 

where ( , )x tψ represents any of the vector field components and ψ  is dependent on 

position x  and time t . However, when the medium is inhomogeneous with a permittivity 

( )xe  that depends on position x , then the wave equation is not the same as before. The 

wave equation is derived by the following procedures. First we consider the first line of 

equation (3.1) and equation (3.21). Combining these equations yields 

( ρ∇⋅ + ∇ ⋅E Εe e) =                                               (3.31) 

Divide by e on both sides 

( ( lnρ ρ∇ ⋅
∇ ⋅ = − = − ∇ ⋅

EE Εe) e)
e e e

                                 (3.32) 

Now take curl of the third of equation (3.1) 

( )
t

∂
∇× ∇× = −∇×

∂
BE                                             (3.33) 

( )2( ) ( )
t

μ∂
∇ ∇⋅ −∇ = − ∇×

∂
E E H                                    (3.34) 

And substitute equation (3.32) into equation (3.34) 

( )2( ln ( )
t

ρ μ∂⎡ ⎤∇ − ∇ ⋅ −∇ = − ∇×⎢ ⎥ ∂⎣ ⎦
E He) E

e
                           (3.35) 

One of the laws for operations with the div-and-curl operator is  

( ) ( )F F Fφ φ φ∇× = ∇× + ∇ ×                                       (3.36) 

and so equation (3.35) becomes 

[ ] ( ) [ ]2 ( ln ( )
t t

ρ μ μ∂ ∂⎡ ⎤∇ −∇ +∇ ∇ ⋅ = ∇× + ∇ ×⎢ ⎥∂ ∂⎣ ⎦
E E H He)

e
              (3.37) 
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Using the fourth line in equation (3.1), equation (3.37) becomes 

[ ] [ ]
2

2
2 ( ln ( )

t t
ρμ μ∂ ∂

∇ − + ∇ ∇ ⋅ = ∇ + ∇ ×
∂ ∂

EE E He e)
e

                     (3.38) 

For nonmagnetic material, 0μ μ= . When 0ρ = , equation (3.38) can be simplified to 

[ ]
2

2
2( ln 0

t
μ ∂

∇ +∇ ∇ ⋅ − =
∂

EE Ee) e                                    (3.39) 

Finally, with the help of the refractive index, 2

0
n = e

e , and the speed of light in vacuum, 

2

0 0

1c μ= e , equation (3.39) becomes 

[ ]
2 2

2
2 22 (ln ) 0nn

c t
∂

∇ + ∇ ∇ ⋅ − =
∂

EE E                                  (3.40) 

The extra term in equation (3.40), [ ]2 (ln )n∇ ∇ ⋅E , will not be zero when n  varies with 

position. So electric fields ,x yE E  and zE  may not satisfy the same wave equation. 

Consequently, we can’t make these vector waves into a single scalar wave. Also, we will 

get some error by using scalar theory, even in the homogeneous medium when the 

boundary conditions are imposed on a wave [20]. 

We will consider scalar components and the corresponding scalar wave equation 

instead of the full vector theory in the thesis. 
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IV. THE TRANSFER FUNCTION 

For the purpose of our model, we have to develop the transfer function of a wall-

like medium. We assume that the wave propagates into the medium with an index of 

refraction ( mn ). The source is located at 0 0 ˆr z z= − , and coordinates are as shown in 

Figure 7.  

The scalar wave equation with source ( , )s r t  in the time domain becomes 

2 2
2

2 2 ( , )n EE s r t
c t

∂
∇ − =

∂
                                             (4.1) 

Using the Inverse Fourier Transform, we can express the source term in terms of angular 

frequency (ω ) and oscillation frequency (ν ) as 

1( , ) ( , )
2

i ts r t S r e dωω ω
π

∞

−∞
= ∫                                         (4.2) 

where ( , )S r ω  is the source term in the angular frequency domain. 

Using the identity 2ω πν=  and 2d dω π ν= , equation (4.2) becomes 

2( , ) ( , ) i ts r t S r e dπνν ν
∞

−∞
= ∫                                            (4.3) 

where ( , )S r ν  is the source term in the oscillation frequency domain. 

In the previous chapter, we showed that a plane wave solution is in the form of equation 

(3.15). This will satisfy equation (4.1), and we can obtain the following relationship. 

2 2
2

E Et ω∂ = −
∂

                                                   (4.4) 

Then we can make equation (4.1) into a time independent wave equation as 

2 2 2 ( , )E n k E S r ν∇ + =                                               (4.5) 

To get the solution of equation (4.5), we put the source at the point 0 0 ˆr z z= −  and use the 

Green’s function which satisfies the following equation 
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Figure 7.   Point source emanating waves through a medium 

2 2 2
0 0 0( ( )) ( , ) ( ) ( ) ( ) ( )k n z g r r r r x y z zδ δ δ δ∇ + = + = +                   (4.6) 

where 2k π
λ=  and λ  is the wavelength in free-space. 

The refractive index of our system is 

1 0
( ) 0

1

for z
n z n for z L

for L z

<⎧
⎪= ≤ ≤⎨
⎪ <⎩

                                          (4.7) 

Then we can get the solution for E  in the frequency domain as 

3
0 0( , ) ( , ) ( , )E r g r r S r d rν ν= ∫                                         (4.8) 

Where 0( , )g r r  is the Green’s function in the spatial domain, and the solution for E  in 

the time domain (using the Inverse Fourier Transform) as 

2( , ) ( , ) i tE r t E r e dπνν ν
∞

−∞
= ∫                                          (4.9) 

L

(0, 0, -z) 
Ẑ

X̂

Ŷ
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In our model, we assume that the medium is essentially non-conductive, so the 

electromagnetic wave can propagate the medium with little damping. Since we put the 

source at 0 0 ˆr z z= −  along the ẑ  direction we can convert the equation (4.6) into the 

Fourier domain. 

(2 2 )
0 0( , , , ) ( , , , ) x yi x y

x yG z r g x y z r e dxdyπν πνν ν
∞ ∞ − +

−∞ −∞
≡ ∫ ∫                     (4.10) 

(2 2 )
0 0( , , , ) ( , , , ) x yi x y

x y x yg x y z r G z r e d dπν πνν ν ν ν
∞ +

−∞
≡ ∫                       (4.11) 

These expressions are correct in our model, because the medium remains constant in the 

x  and y direction. Therefore, there is no changing of the medium in these directions. 

Now substituting equation (4.11) into equation (4.6) and using the identity in 

equation (4.10), we obtain 

2
2 2 2 2

0 0 02(2 ) (2 ) ( , , , ) ( ) ( , , , ) ( )x y x y x yG z r k n z G z r z z
z

πν πν ν ν ν ν δ
⎡ ⎤∂
− − + + = +⎢ ⎥∂⎣ ⎦

  (4.12) 

If we define  

ˆ ˆ2 2x yF x yπν πν≡ +                                               (4.13) 

we get  

2 2 2(2 ) (2 )x yF πν πν= +                                          (4.14) 

Using the wave number definition, we can rewrite 

22 2
2 2 2 2

2 2 2

2 2 2

(2 ) (2 ) (2 )

x y z
x y z

x y z

k k k k π π π
λ λ λ

πν πν πν

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + + = + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

= + +

                     (4.15) 

1 1 1, ,x y z
x y z

ν ν ν
λ λ λ

= = =  

If 0z z≠ − , the equation (4.12) becomes the homogeneous wave equation as 
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Figure 8.   Cross sectional view of the wave front 

2
22 2

0 02 ( , , , ) ( ) ( , , , ) 0x y x yG z r k n z F G z r
z

ν ν ν ν∂ ⎡ ⎤+ − =⎣ ⎦∂
                   (4.16) 

So this solution becomes 

2 22 2 2 2( ) ( )
0( , , , ) iz k n z F iz k n z F

x y
right going wave left going wave

G z r Ae Beν ν − − −= +������	�����
 ������	�����
                          (4.17) 

The solutions of the wave equations in each region must satisfy the boundary conditions, 

which state that the wave and its derivatives must be continuous at all boundaries. Then 

we can find the coefficients of each component wave as they propagate through the 

medium (Figure 8). 

The boundary conditions are  

0 0
0 0

, 1
b B

B b

z z z z
z z z z

G GG G
z z=− =−

=− =−

∂ ∂
= − =

∂ ∂
                         (4.18) 

0 0
0 0

,
b m

b m

z z
z z

G GG G
z z= =

= =

∂ ∂
= =

∂ ∂
                                (4.19) 

L

Medium

(0, 0, -z) Ẑ

BB bB mB

bA mA TA  

bn  mn  Tn  

bG  mG  TG  BG  
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,
m T

m T

z L z L
z L z L

G GG G
z z= =

= =

∂ ∂
= =

∂ ∂
                               (4.20) 

We can ignore the coefficient BA  of the left going component at 0z z< −  and TB  of the 

right going component at z L> , because  the wave is outgoing from the source.  In 

addition, by imposing the Sommerfeld radiation condition, the surface integral at infinity 

vanishes [16]. Since the waves are continuous, the Green’s functions and its derivatives 

also have to be continuous, except at the source. Let’s find the derivative of the Green’s 

function. We use equation (4.12) and integrate it on both sides. 

2
2 2 2 2

0 0 02 ( , , , ) ( ( )) (2 ) (2 ) ( , , , ) ( )x y x y x yG z r dz k n z G z r dz z z dz
z

ν ν πν πν ν ν δ∂
+ − − = +

∂∫ ∫ ∫
(4.21) 

The left hand side becomes the first derivative of the Green’s function and an integral of 

the Green’s function. The right hand side is the same as the Heaviside Step Function, 

which is a discontinuous function whose value is zero for negative argument and one for 

positive argument. Then the equation becomes 

2 2 2 2
0 0 0( , , , ) ( ( ) (2 ) (2 ) ) ( , , , ) ( )x y x y x yG z r k n z G z r dz H z z

z
ν ν πν πν ν ν∂

+ − − = +
∂ ∫    (4.22) 

The second term in equation (4.22) will vanish, because the Green’s function is 

continuous at any given boundary. But the first term will be continuous as long as the 

boundaries are 0z z< −  or 0z z> − . As the first derivative crosses the source where the 

Heaviside Step Function goes from 0 to 1, the difference across will jump to 1. Using the 

same boundaries as the above, we get the following: 

If we let the refractive index obey 

( 0)
(0 )
( )

b

m

T

n z
n z L
n L z

<
≤ ≤
<

 

then, we can derive the following equations: 

At 0z =  
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b b m mA B A B+ = +                                                (4.23) 

2 2 2 22 2 2 2 2 2 2 2b b m m
b b m mA k n F B k n F A k n F B k n F− − − = − − −        (4.24) 

1 2

1 1 1 1b m

b m
b b m m

M M

A A
N N N NB B

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦1442443 1442443

                         (4.25) 

where 2 22 2 2 2
b b m mN k n F and N k n F= − = −  

At z L=  

22 22 22 2 2 2mm T
iL k n FiL k n F iL k n Fm m TA e B e A e

− −− −+ =                           (4.26) 

22 222 2

22 2

2 22 2 2 2

22 2

mm
m m

T
T

iL k n FiL k n Fm m

iL k n FT

A k n F e B k n F e

A k n F e

− −−

−

− − −

= −
                (4.27) 

3

4

0

m m

m m

T T

T T

iL N iL N m

miL N iL N
m m

M

i N L i N L T

i N L i N L
T

M

e e A
BN e N e

e e A

N e e

−

−

−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥− ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

1444442444443

144424443

                            (4.28) 

where 22 2
T TN k n F= −  and  

At 0z z= −  

2 2 22 2 2 2 2 2
0 0 0b b biz k n F iz k n F iz k n FB b bB e A e B e− − − −= +                      (4.29) 

We need to use the jump condition, which is the second one in equation (4.18) to obtain 

2 22 2 2 2
0 0

22 2
0

2 22 2 2 2

22 2 1

b b

b

iz k n F iz k n Fb b
b b

iz k n FB
b

A k n F e B k n F e

B k n F e

− − −

−

− − −

= − − +
                 (4.30) 
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b b

M

iz N iz N B

iz N iz N
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M

e e A
BN e N e

e e B

N e e

−

−

−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥− ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦− ⎣ ⎦⎣ ⎦

1444442444443

14444244443

                         (4.31) 

where 22 2
b bN k n F= − . Now we can get the solution for the coefficient of the Green’s 

function. Let’s write our results in the simplified form 

1 2

b m

b m

A A
M M

B B
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

                                             (4.32) 

3 4 0

m T

m

A A
M M

B
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

                                             (4.33) 

5 6

0
10

b B

b

A B
M M

B
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

                                        (4.34) 

where the reflection and the transmission amplitudes can be expressed in terms of the 

amplitude of the incident wave bA  

1 1
1 2 3 4 0

b T

b

A A
M M M M

B β

− −⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦�������	������
                                     (4.35) 

1,1 2,1
b T b TA A B Aβ β= =                                       (4.36) 

2,1

1,1 1,1

b
b b T AB A A

β
β β

= =                                        (4.37) 

Doing some algebra, we get the reflectance and the reflection coefficient *R r r= . 

where 

( )( ) ( )( )
( )( ) ( )( )

2

2

m

m

i L Nb
T m b m T m b m

b i L N
T m b m B m T m

N N N N N N N N eBr
A N N N N N N N N e

+ − + − + +
= =

+ + + − + −
   (4.38) 
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By the same technique, we can obtain the transmittance and the transmission coefficient 

*T t t= . 

where 

( )( ) ( )( )
4 T

m m

iL NT
b m

b iL N iL N
b m T m b m T m

N N eAt
A N N N N e N N N N e

−

−
= =

+ + + − − +
 

(4.39) 

We also get the other coefficients inside the medium 

1
3 4 0

m T

m

A A
M M

B
−

Ρ

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦���	��
                                            (4.40) 

1,1 2,1
1,1 2,1

1,1 1,1

m T b m T bA A A B A A
β β
Ρ Ρ

= Ρ = = Ρ =                         (4.41) 

( )
( )( ) ( )( ) 2

2
m

m
b m T

b i L N
T m b m b m T m

N N NA
A N N N N N N N N e

+
=

+ + + − + −
    (4.42) 

( )
( )( ) ( )( ) 2

2
m

m
b m T

b i L N
T m b m b m T m

N N NB
A N N N N N N N N e

−
=

+ + + − + −
    (4.43) 

At the source, we obtain  

( )1 1 1
6 5 1 2 3 4

0
10 0

B TB A
M M M M M M− − −⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪= −⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎪ ⎪⎣ ⎦⎣ ⎦ ⎣ ⎦⎩ ⎭
                     (4.44) 

and if we let 

1 1 1
6 5 1 2 3 4X M M M M M M− − −=                                       (4.45) 

0

0

1
6

1
(1 )0

1 1
(1 )

b

b

iz N
b

iz N
b

e N
S M

e N

−

−

⎡ ⎤−⎢ ⎥+⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥
+⎢ ⎥⎣ ⎦

                                (4.46) 
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then equation (4.44) becomes 

0 0

B TB A
X S

⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
                                            (4.47) 

where 1,1
1,1 1,1 1,1

1,1

B T bX
B X A S A S

β
⎛ ⎞

= − = −⎜ ⎟⎜ ⎟
⎝ ⎠

  and   2,1 2,10 TX A S= −                               (4.48) 

We know that the refractive indexes outside of the medium are the same: b TN N N= = . 

What we need for our simulation are the amplitudes of the incident wave ( bA ), the 

reflected wave ( bB ), and the transmitted wave ( TA ). 

0

2

iz N
b eA

N
=                                                       (4.49) 

( )
( ) ( )

0
2

2 2 2

( )
2

m

m

i L N iz N
m mb b

i L N
m m

N N N N e eB r A
NN N N N e

− + −
= ∗ =

+ − −
              (4.50) 

( ) ( )
0

2 2

4
2m m

iL N iz N
mT b

iL N iL N
m m

N N e eA t A
NN N e N N e

−

−
= ∗ =

+ − −
         (4.51) 

Since the free space Green’s function is a solution of the Helmholtz equation and satisfies 

the radiation condition at infinity, this should be the solution in that region. The following 

are the Green’s functions we are interested in :  

For the region 0 0z z− < < , 

( )
( ) ( )

0 22

0 22
20

2 2 2

2
( , , , ) ( )

2

m

m

iz N
iz k F

i L N iz Nx y
iz k Fm m

i L N
m m

e e right going
N

G z r N N N N e e e left going
NN N N N e

ν ν

−

− −

⎧
⎪
⎪⎪= ⎨ − + −⎪
⎪ + − −⎪⎩

 (4.52) 

For the region z L> , 
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( ) ( )
0 22

0 2 2

4
( , , , )

2m m

iL N iz N
iz k Fm

x y
iL N iL N

m m

N N e eG z r e right going
NN N e N N e

ν ν
−

−

−
=

+ − −
  

(4.53) 

We can also get the coefficient mA  and mB  by solving this 

1
2 1

m b

m b

A A
M M

B B
−⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

                                            (4.54) 

For the region 0 z L< < , we get these coefficients 

( )
( ) ( )

0

2 2 2

2

2 m

iz N
mm

i L N
m m

N N NeA
N N N N N e

+
= ×

+ − −
               (4.55) 

( )
( ) ( )

0
2

2 2 2

2

2

m

m

i L Niz N
mm

i L N
m m

N N N eeB
N N N N N e

−
= ×

+ − −
               (4.56) 

Finally, we obtain the Green’s function in the media 

22 2

0( , , , ) iz n k Fm
x yG z r A e right going waveν ν −=                 (4.57) 

22 2

0( , , , ) iz n k Fm
x yG z r B e left going waveν ν − −=                  (4.58) 
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V. THE ANGULAR SPECTRUM 

A. TRANSFORM SPHERICAL WAVES 

The angular spectrum method is a technique for modeling the propagation of a 

wave field. This method involves expanding a complex wave field into a summation of 

many plane waves. As the spherical waves propagate through a wall, they are 

appropriately described by a planer expansion, because waves propagate in all directions 

spherically, and the boundary is plane. We have to transform the spherical waves to plane 

waves, since the reflected wave from a plane media with a spherical wave is also 

spherical [21]. To obtain the angular spectrum 0( , , , )g x y z r  we need to take the Inverse 

Fourier Transform of the right going wave in the region 0 0z z− < <  in equation (4.52).  

We obtain  

(2 2 )
0 0( , , , ) ( , , , ) x yi x y

x y x yg x y z r G z r e d dπν πνν ν ν ν
∞ ∞ +

−∞ −∞
≡ ∫ ∫                     (5.1) 

In this region, the refractive index is 1n = , and equation (5.1) becomes 

2 2 2
0 2 2 2

(2 ) (2 )
(2 ) (2 ) 2 ( )

0 2 2 2
( , , , )

2 (2 ) (2 )

x y
x y x y

iz k
iz k i x y

x y

x y

eg x y z r e e d d
k

πν πν
πν πν π ν ν ν ν

πν πν

− −
∞ ∞ − − +

−∞ −∞
=

− −
∫ ∫  (5.2) 

2 2
0( ) 1 (2 / ) (2 / )

(2 2 )
0 2 2

( , , , )
2 1 (2 / ) (2 / )

x y
x y

ik z z k k
i x y

x y

x y

eg x y z r e d d
k k k

πν πν
πν πν ν ν

πν πν

+ − −
∞ ∞ +

−∞ −∞
=

− −
∫ ∫         (5.3) 

Let’s suppose a wave vector k  has magnitude 2π
λ

 and direction cosines ( , , )α β γ , (See 

Figure 9) then k  is expressed as  

ˆ ˆ ˆ ˆˆ ˆ( )x y zk k x k y k z k x y zα β γ= + + = + +                               (5.4) 

2 22 ˆ ˆ ˆ( 1 )x y zπ α β α β
λ

= + + − −                                     (5.5) 
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since direction cosines are 2 2 2 1α β γ+ + =  where 

ˆ

ˆ

ˆ

x

y

z

k k x k

k k y k

k k z k

α

β

γ

= ⋅ =

= ⋅ =

= ⋅ =

 

Then we can get the following identities 

22, , yx
x yk k k k

k k
πνπνα β α β= = ⇒ = =  

22 , yx dfdfd d
k k

ππα β= =  

Using these identities, equation (5.3) becomes 

2 2
0

0

( ) 1
( )

0 2 2

( ) ( )

2

( , , , )
2 22 1

8

ik z z
ik x y

ik z z ik x y

e k kg z r e d d
k

k e e d d

α β
α β

γ α β

α β α β
π πα β

α β
π γ

+ − −∞ ∞ +

−∞ −∞

+ +∞ ∞

−∞ −∞

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠− −

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫
                (5.6) 

From H. Weyl’s expansion of the spherical waves into planar waves [22] 

 

Figure 9.   The wave vector k
r
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k
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1cos α−  
1cos γ−  



 39

[ ]( ) ( ) ( ) )1
2

ik r r
ik x x y y z ze i e d d

r r
α β γ α β

π γ

′−
∞ ∞ ′ ′ ′− + − + −

−∞ −∞
=

′− ∫ ∫                          (5.7) 

where ˆ ˆ ˆ ˆˆ ˆ,r xx yy zz r x x y y z z′ ′ ′ ′= + + = + +  

Substituting equation (5.6) into equation (5.7), we get 

0

0
0

( , , , )
4

ik r rk eg x y z r
i r rπ

−

=
−

                                            (5.8) 

and applying the far-field approximation to equation (5.8), we obtain 

0ˆ
0( , , , )

4

ikr
ikr rkeg x y z r e

i rπ
− ⋅�                                            (5.9) 

 

B. REFLECTIVITY OF MEDIA 

In the previous chapter, we obtained planer expansions of Green’s functions. To 

calculate the reflectivity on the surface, we need to employ spherical coordinates. In 

equation (4.52), we see the reflectivity ( R ) from left going waves as 

( )
( ) ( )

2

2 2 2

( ) m

m

i L N
m m

i L N
m m

N N N N e
R

N N N N e

− + −
=

+ − −
                           (5.10) 

where, 

2 2 2 2 2 2 2(2 ) (2 ) , (2 ) (2 )m m x y x yN n k N kπν πν πν πν= − − = − −      (5.11) 

The spherical expansion of the reflected wave can be obtained by converting R  into 

spherical coordinates. Using the relationship in equation (5.4) and the spherical 

coordinate representation, we obtain 

2 sin cos , 2 sin cos , 2 cosx y zk k kπν θ φ πν θ φ πν θ= = =                 (5.12) 

Substituting equation (5.12) into equation (5.11), we get 
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2 2 2sin , 1 sin cosm mN k n N k kθ θ θ= − = − =                     (5.13) 

And inserting these results into equation (5.10), we get the reflectivity as 

( )
( ) ( )

2 2

2 2

2 2 2 sin

2 2
2 sin2 2 2 2 2 2

(1 ) 1
( )

sin 1 sin sin 1 sin m

i kL n
m m

i kL n
m m

n n e
R

n n e

θ

θ
θ

θ θ θ θ

−

−

− + −
=

− + − − − − −
   (5.14) 

( )
( ) ( )

2 2

2 2

2 sin2 2

2 2
2 sin2 2 2 2

(1 ) 1

sin cos sin cos

m

m

i kL n
m m

i kL n
m m

n n e

n n e

θ

θθ θ θ θ

−

−

− + −
=

− + − − −
                    (5.15) 

  

C. EVANESCENT WAVES 

The electric field does not abruptly vanish at the boundary, because the phase 

difference between the incident and reflected waves prevents the complete destructive 

interference required to eliminate the transmitted wave. The transmitted field that extends 

beyond the boundary of the dielectric, when a wave is totally internally reflected, is 

known as the evanescent wave [19]. 

If we choose a coordinate system in which the boundary lies in the x y−  plane 

and k
r

 lies in the x z−  plane and suppose we have a transmitted wave of the form 

( )
,0

ti k r t
t tE E e ω⋅ −=

r rr r
                                               (5.16) 

then, we can rewrite this with Snell’s law as  

sin cost t t t tk r k x k zθ θ⋅ = +
r r                                        (5.17) 

2

sin sin 1i i
t

xk iz
n n
θ θ⎛ ⎞

= + −⎜ ⎟⎜ ⎟
⎝ ⎠

                            (5.18) 

Substituting equation (5.18) into equation (5.16), we get the transmitted field 

( )
,0( , ) k z i k x t

t tE r t E e e ω′′ ′− −=
rr                                         (5.19) 
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where k ′′  is a constant and sint tk k θ′ = . This wave propagates along the boundary with 

propagation constant k ′ , diminishing exponentially with constant k ′′ . 

Let’s look at the region 0z z L− < <  and examine how much the wave evanesces. 

We need equation (4.52) and equation (4.57) for the reflection and transmission. 

2 2 2
0( ) (2 ) (2 ) (2 2 )

0( , , , ) ( , ) x y x yi z z k i x y
x yg x y z r A e eπν πν πν πνν ν − + − − += %                (5.20) 

2 2 2 2
0( ) (2 ) (2 ) (2 2 )

0( , , , ) ( , ) x y x yi z z n k i x y
x yg x y z r A e eπν πν πν πνν ν + − − +′= %               (5.21) 

For the reflected wave in equation (5.20), there is an angle of incidence that results in a 

transmission angle that is parallel to the surface. If the incident angle increases over the 

critical angle, the transmitted wave will evanesce. In the region 0z < , the intensity of 

reflection wave is  

 
2 2 2

02( ) (2 ) (2 )* * x yz z x y kI g g A Ae πν πν+ − −= =                             (5.22) 

As z  goes negative, the intensity becomes smaller, so the evanescing wave will be much 

smaller. Therefore in this model system, we will ignore the evanescent waves as 

unimportant. 

 

Figure 10.   The wave vector ,i r tk k and k
r r r
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Figure 11.   Reflection (polystyrene, quartz, glass) 

D. MATERIAL ANALYSIS 

Typical materials of common walls are wood, tile, and concrete. These materials 

have their own refractivity defined by the index of refraction 

sin
sin

i

r

cn
v

θ
θ

= =                                                    (5.23) 

The refractive indexes of materials depend on the frequency with which it is measured. 

Unfortunately, indices of refraction in the terahertz region have not been well tabulated. 

Not all light striking a transparent material is refracted as shown in Figure 10 [23]. The 

reflectance, R  is related to the index of refraction by  
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2

1

1

k k

k k

n nR
n n

+

+

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

                                                   (5.24) 

(when the incident angle 0iθ = ). 

From equation (5.24), we can predict that the higher- n  materials are the more refractive. 

In this section, we will analyze materials using MATLAB simulations based on equation 

(5.15) and find appropriate frequencies that can penetrate wall materials without much 

loss and with good reflection of objects. For this simulation, we assume that we are using 

plane waves and normal incidence. 

One of the most attractive advantages about terahertz frequencies is their ability to 

penetrate many common materials. But the terahertz pulse can’t penetrate materials with 

high water content, so we assume the materials used in this simulation are pre-dried. 

Table II shows index of refraction for common materials in terahertz frequency [4, 8]. 

Figure 11 shows that as we increase the index of refraction, the reflection 

becomes large. In Figure 12, we used refractive indexes of common wall materials. In the 

case of tile, rock, and sand the average reflection is quite high. But if we look at this 

figure closely, we can find the frequencies that have low reflection from these materials. 

These frequencies are at about 0.94THz, 1.44THz, etc. and can be used for Through-the-

Wall Imaging. 
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Polystyrene foam 1.01 

Ochroma pyramidale 1.08 

Lophira lata (wood) 1.49 

Skin 1.4 

Body fluid  3.9 

Sand 1.67 

Glass 1.8 

Quartz 1.5 

Tile 1.6 

Stone 1.6 

Table 2.   Index of refraction for common materials. 
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Figure 12.   Reflection (lophira, tile, sand) 
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We also used the index of refraction of human skin and body fluid. Figure 13 

illustrates the reflection from body fluid is very high at frequency 0.94THz. Consequently, 

if we choose 0.94THz frequency for Through-the-Wall Imaging, we will get more data 

from the human body and get a good image. 
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Figure 13.   Reflection (body fluid, skin) 
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VI. INTEGRAL EQUATION 

A. WAVE PROPAGATION EQUATION 

In this thesis we are assuming that the complex dielectric constant and magnetic 

permeability vary slowly over a wavelength of the electromagnetic wave, and we are 

neglecting polarization effects. Then we can write the Helmholtz equation as 

2 2 2( ) ( ) ( ) 0objE k n E∇ + =r r r                                          (6.1) 

If we add 2 ( )k E r  on both sides we get 

2 2 2 2

( )

( ) ( ) ( ( ) 1) ( )obj

O

E k E k n E∇ + = − −
r

r r r r������	�����
                             (6.2) 

where ( )O r  is the target’s object function and is denoted by 

2 2( ) ( 1)objO k n= −r .                                                  (6.3) 

Then the total electric field ( )E r  solution to equation (6.2) is 

( ) ( ) ( ) ( ) ( )inc V
E E g O E d= + −∫ 0 0 0 0r r r r r r r                             (6.4) 

where g  is the Green’s function of the Helmholtz equation and is the solution of the 

differential equation 

2 2( ) ( ) ( )k g δ∇ + − = − −0 0r r r r                                       (6.5) 

where ( )δ − 0r r  is the Dirac delta function. In our model system, the Green’s function 

varies as the observation point changes. From the previous chapter, we found Green’s 

functions in the spatial frequency domain as Eq.(4.52), Eq.(4.53), Eq.(4.57), and 

Eq.(4.58). So in order to get ( )g − 0r r , we have to transform these Green’s functions 

using the Inverse Fourier Transform as 

2 ( )
0( ) ( , , , ) x yi x y

x y x yg G z r e d dπ ν νν ν ν ν+− = ∫∫∫0r r                             (6.6) 
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Figure 14.   Illustration of a scattering of volume RV  bounded by surface RS   

We denote each Green’s function by their domain as  
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and we will use ( )IIIg − 0r r  for our model system in the following section. 

B. THE FIRST BORN APPROXIMATION 

The Born approximation is perhaps the simplest and most widely used EM 

scattering approximation. It is based on the assumption that scattered electric fields inside 
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scatterers are negligible compared to the normal/background electric fields. Hence the 

second term on the right hand side of equation (6.4) is small in comparison to the first 

term within the integral.  In the integrand can approximate 

( ) ( )incE r E≈ r                                                    (6.7) 

Therefore the total electric field in equation (6.4) is calculated as 

3( ) ( ) ( ) ( ) ( )inc incV
E E g O E d= + −∫ 0 0 0 0r r r r r r r                          (6.8) 

Consequently, the scattered field, sE , can be identified with 

3( ) ( ) ( )s incV
E g O E d= −∫ 0 0 0 0r r r r r                                   (6.9) 

C. THE FIRST RYTOV APPROXIMATION 

The Rytov approximation assumes that the incident wave perturbation caused by 

the target can be described by a change of phase in the reference wave. The Rytov 

approximation is obtained by representing the total field as a complex phase [22] 
( )( )E eφ= rr                                                      (6.10) 

We consider the scattering of a scalar wave in an inhomogeneous medium. The field 

satisfies the reduced wave equation 
2 2( ) ( ) 0E k E∇ + =r r                                                (6.11) 

Substituting equation (6.10) into equation (6.11), we get 
2 ( ) 2 ( ) 0e k eφ φ∇ + =r r                                                 (6.12) 

Using the identity 

( )2 ( ) 2 ( ) ( )( )e e eφ φ φφ φ φ∇ = ∇ + ∇ ∇r r r                                        (6.13) 

we substitute equation (6.13) into equation (6.12) and divide by ( )eφ r  on both sides and 

get the following Riccati equation  

( )2 2( ) 0kφ φ φ∇ + ∇ ∇ + =                                              (6.14) 

We denote the refractive index as  

0 0( ) ( ) (1 ( ))k k n k nδ= = +r r r                                           (6.15) 
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The zero perturbation field for ( ) 1n r =  can be written as ( )( ) i
iE eφ= rr , and its phase will 

satisfy equation (6.14) 
2 2 2

0( ) 0i i kφ φ∇ + ∇ + =                                               (6.16) 

We can express the total complex phase, φ , as the sum of the incident phase iφ  and the 

scattered complex phase sφ  

i sφ φ φ= +                                                           (6.17) 

Now substitute equation (6.17) into equation (6.14) 
2 2 2( ) ( ( )) 0i s i s kφ φ φ φ∇ + + ∇ + + =                                       (6.18) 

Expanding this equation 
2 2 2 2 2( ) ( ) 2( )( ) 0i s i s i s kφ φ φ φ φ φ∇ +∇ + ∇ + ∇ + ∇ ∇ + =                     (6.19) 

and subtract equation (6.16) from equation (6.19), we get 
2 2 2 2

02( )( ) ( ) ( )s i s sk kφ φ φ φ∇ + ∇ ∇ + − = − ∇                            (6.20) 

2 2 2 2
02( )( ) (( ) ( 1))s i s s k nφ φ φ φ∇ + ∇ ∇ = − ∇ + −                           (6.21) 

Using the identity 
2 2 2( ) 2( )( )i s s i i s i sE E E Eφ φ φ φ∇ = ∇ + ∇ ∇ + ∇                            (6.22) 

and assuming a plane wave for the incident field, so that  
0 ( )iik s r i r

iE Ae Ae φ⋅= =                                                (6.23) 

then we find the following expression 
2 2

0i iE k E∇ = −  and  i i iE E φ∇ = ∇                                       (6.24) 

So equation (6.22) becomes 
2 2 2

02 ( )i i s i s i s i sE E E k Eφ φ φ φ φ∇ ⋅∇ + ∇ = ∇ +                                (6.25) 

Now substituting equation (6.25) into equation (6.21) , we get 

{ }2 2 2 2 2
0( ) ( ) ( ) ( 1)i s i s i sE k E E k nφ φ φ∇ + = − ∇ + −                            (6.26) 

Solving this equation using the free space Green’s function, we get 

{ }2 2 2
0( ) ( ) ( ) ( ) ( ( ) ( ( ) 1)i s i sE g E k n dφ φ= − ∇ + −∫ 0 0 0 0 0r r r r r r r r                (6.27) 

2 2 2
0

1 1( ) ( ) ( )( ( ) ( ) ( ) ( ( ) 1)
( ) ( )s i s i

i i

g E d g E k n d
E E

φ φ= − ∇ + − −∫ ∫0 0 0 0 0 0 0 0r r r r r r r r r r r
r r

 (6.28) 
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By the Rytov approximation, the first term in equation (6.28) is very small, so equation 

(6.28) can be approximated as  

2 2
0

1( ) ( ) ( ) ( ( ) 1)
( )s i

i

g E k n d
E

φ = − −∫ 0 0 0 0r r r r r r
r

                       (6.29) 

If we denote the target object function ( )O r  as 
2 2
0( ) ( ( ) 1)O k n= −0r r                                              (6.30) 

Then equation (6.29) becomes 

1( ) ( ) ( ) ( )
( )s i

i

g E O d
E

φ = −∫ 0 0 0 0r r r r r r
r

                                 (6.31) 

The corresponding solution for the total field is  

( ) ( ) s
iE E eφ=r r                                                  (6.32) 

But it is only valid when 2 2 2
0( ) ( ( ) 1)s k nφ∇ −0r�  

From equation (6.10), the total electric field is given 

0 ( ) ( )( ) ( ) ( ) s
i sE E E eφ φ+= + = r rr r r                                      (6.33) 

Rearranging this equation for the scattered field, ( )sE r , we get 

( )( ) ( )( 1)s
s iE E eφ= −rr r                                             (6.34) 

Substituting equation (6.31) into equation (6.34), finally we get the scattered field as 

1 ( ) ( ) ( )
( )( ) ( ) 1

i
i

g E O d
E

s iE E e
−⎡ ⎤∫

= −⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0 0r r r r r
r

0r r                              (6.35) 

Note that when the argument of the exponential is small, then we can approximate 

1 ( ) ( ) ( )
( ) 11 ( ) ( ) ( )

( )
i

i
g E O d

E
i

i

e g E O d
E

−∫
≈ + −∫

0 0 0 0r r r r r
r

0 0 0 0r r r r r
r

                 (6.36) 

and, in this case, the Rytov approximation reduces to the first Born approximation. 
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VII. SIMULATION 

A. RECONSTRUCTION ALGORITHM 

For many reasons, it is very useful to convert functions in the time domain into 

functions in the frequency domain. The primary reason is that it gives us an easy way to 

solve difficult problems. For instance, when we meet the convolution integral in the time 

domain, we can express this as a simple multiplication integral in the frequency domain. 

To apply the Rytov approximation for object reconstruction, we need to estimate 

the scattered field ( )sE r , which is denoted in equation (6.35). From equation (6.35) we 

have 

( )( ) ln 1 ( ) ( ) ( )
( ) R

s
i iV

i

EE g E O d
E
⎡ ⎤

+ = −⎢ ⎥
⎣ ⎦

∫ 0 0 0 0
0

rr r r r r r
r

                          (7.1) 

Since a kernel is formed as a convolution between the Green’s function, the scattering 

potential, and the incident electric field, we make a reconstruction algorithm in the 

frequency domain by Fourier Transform of the measurement data. The left term in 

equation (7.1) is our measurement data. If we denote this by ( )m r , and then 

( ) ( ) ( ) ( )
R

iV
m r g E O d= −∫ 0 0 0 0r r r r r                                      (7.2) 

We extend the volume integral to infinity and take 2D Fourier Transform by assuming 

receivers will be place at fixed points ( , ,i ix y z ). Then equation (7.2) becomes 

( , ) ( , ) ( , )x y x y x yGν ν ν ν ν νΜ = Χ                                        (7.3) 

where, 

2 ( )
0 0 0 0( , ) ( , ) ( , ) x yi x y

x y iE x y O x y e dxdyπ ν νν ν
∞

− +

−∞

Χ = ∫ ∫                        (7.4) 

By using equation (7.3) and applying equation (2.9) we can get ( , )x yν νΧ  as 
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( ){ }1
( , ) ( , ) ( , ) ( , ) ( , )T T

x y x y x y x y x yG G Gν ν ν ν ν ν ν ν ν ν
−

Χ = Μ                   (7.5) 

Substituting equation (7.5) into equation (7.4), we can get the “best object” 0( )O r  and 

taking the Inverse Fourier Transform of this as 

( ){ }1 2 ( )
0

1( ) ( , ) ( , ) ( , ) ( , )
( )

x yi x yT T
x y x y x y x y

i

O r G G G e dxdy
E

π ν νν ν ν ν ν ν ν ν
∞

− +

−∞

⎡ ⎤= Μ⎢ ⎥⎣ ⎦∫ ∫
0r

  (7.6) 

Finally, we get the “best object” 0( )O r  in the spatial domain. The incident wave 

( ) ikz
iE r Ae−=  becomes ( ) ikz

iE r tAe−′ =  after passing through a transparent media with 

transmittance t . The Green’s function to be used in equation (7.6) is 

( ) ( )
0 22

0 2 2

4
( , , , )

2m m

iL N iz N
iz k Fm

x y
iL N iL N

m m

N N e eG z r e
NN N e N N e

ν ν
−

−

−
=

+ − −
    (7.7) 

B. MATLAB CODE IMPLEMENTATION 

The total field at the receivers will be composed of the incident field from 

transmitters, the reflected field from the wall, the scattered field from the target, and the 

evanescing field. In the previous chapter, we showed the evanescent field is negligible in 

comparison with the incident field. 

For our image processing, we are only interested in the scattered field data and 

use equation (6.35) and equation (7.6) to create scattered field images. Due to the 

limitation of computer ability, we are restricted in the number of scattering points to the 

sampling frequency, and bandwidth to be examined. 
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(a)  

(b)  

Figure 15.   Amplitude of field scattered from 5 points using Born (a) and Rytov (b) 
approximations 

Figure 15 shows 5 scattering points applying the Born and Rytov approximations 

at 2z m= . We will add Gaussian noise to this data and use Tikhonov regularization, 

truncated SVD methods, and the L-curve method discussed in chapter 2. All MATLAB 

codes are presented in Appendix D. 



 56

C. SIMULATION RESULTS 

To compare the Born and Rytov approximations, first we simulate with equation 

(6.9) and equation (6.35) separately. We get Figure 15 (a) from the Born approximation 

and Figure 15 (b) from the Rytov approximation. These two figures look very similar, 

and they localize the scatterers equally well. But the strength of each peak differs by 

1.2% in both figures. The difference is formed by subtracting equation (6.35) from 

equation (6.9) and simulating again. Figure 16 shows us the differences between them. 

The differences of each peak are approximately 0.16%, and both approximations perform 

equally well. 

D. SIGNAL TO NOISE RATIO 

For the simulation of measuring a scattered electric field, we have to add noise to 

the original signal from the Rytov approximation, since signals are corrupted by noise in 

nature. We will use the Gaussian noise that is commonly used as an additive noise model 

in physics. Since the Signal to Noise Ratio (SNR) is defined as the ratio of signal power 

to noise power, we calculate the SNR by taking the ratio of the sum of the signal and the 

Gaussian noise in the frequency domain. Furthermore we find the minimum SNR to 

recognize the image of objects by increasing a noise factor. 
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Figure 16.   Differences between Born and Rytov approximations 

 

Figure 17.   Scattering points with Gaussian noise SNR=-20dB 
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E. TIKHONOV REGULARIZATION 

Figure 17 shows the scattered signals with noise. We use Tikhonov regularization 

to mitigate these noise effects. During this process there is a trade-off between the 

regularized output and the original data. In order to optimize the trade-off, we have to 

choose the best regularization parameters. To find the regularization parameters we will 

use L-curve method. The L-curve method is based on a log-log plot of the norm of the 

residual versus the solution for a range of values of regularization parameters [14]. The 

common expression of the Tikhonov regularization is  

2 2

2 2
F AX b Xα α= − +                                              (7.8) 

where 2

2
AX b−  is a residual norm, 2

2
X  is a regularized solution, and α  is the 

regularization parameter. The “horizontal” part of the L-curve is dominated by 

regularization errors that occur from over-smoothing and the “vertical” part is dominated 

by perturbation errors that occur from under-smoothing. Hence, we choose our optimal 

solution as the one at the corner of the L-curve in Figure 18(b). So a particular 

regularization parameter is 4.6α = . Using this parameter we can get a good recovered 

image in Figure 19. However, Figure 20 shows us that if we use regularization parameter 

smaller than the optimal one, we will get an unstable image. 
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Figure 18.   Regularization parameter (a) and L-curve (b) 
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Figure 19.   Tikhonov Regularization α =4.6 at SNR=-20dB 

 

Figure 20.   Tikhonov Regularization α =0.5 at SNR=-20dB 
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F. TRUNCATED SVD  

Since the operator A  of TWI has large singular values, we can apply the 

truncated SVD method. Using the singular value spectrum plot in Figure 21, we can find 

values 0.34=K  and , 0.10=K  where the singular values change rapidly, and truncate 

with these values. Figure 22 is obtained by truncating 0.34=K  ,and Figure 23 is 

obtained by truncating 0.10=K . These two figures are good examples of optimal 

truncation parameters. 

On the contrary, Figure 24, obtained at 100=K , shows that a too-large K  affects 

the accuracy of estimation. 
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Figure 21.   Singular value spectrum of transfer operator 
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Figure 22.   TSVD Κ =0.34 at SNR=-20dB 

 

Figure 23.   TSVD Κ =0.10 at SNR=-20dB 

TSVD w/ truncation at kappa= 0.10 
 SNR=-20.0 dB

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

TSVD w/ truncation at kappa= 0.34 
 SNR=-20.0 dB

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2



 62

 

Figure 24.   TSVD Κ =100 at SNR=-20dB 
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VIII. CONCLUSION 

In recent years, a variety of techniques for THz imaging have been developed for 

the detection of weapons, explosives, and drugs at security check points and for the 

detection of illegal immigrants at the border. This thesis is a review of some of this work. 

We think our model may be useful for military and security officers to detect enemies 

hiding in a room or behind a wall.  

In this thesis we have applied the Born and Rytov approximations to the problem 

of imaging from scattered field measurements. Also we examined the Tikhonov 

regularization parameter selection with the L-curve method. The simulation result 

obtained by the Rytov approximation has been compared to one yielded by the Born 

approximation. The difference between them is insignificant. Therefore the Rytov 

approximation appears to be no better than the Born approximation. It would be useful to 

apply this simulation to real data in the future. In general, the Rytov approximation is 

more accurate than the Born approximation especially, at higher frequencies [24]. 

Further modeling efforts are also required. We have assumed the medium (wall) 

is linear, nonmagnetic, and nonconductive. But in reality, wall materials are not exactly 

like this. Some materials are nonlinear, magnetic, and conductive. So for this case, the 

wave equation has to be adjusted to derive a new Green’s function to fit this model, and 

we have to apply vector theory instead of scalar theory to the wave equation. 

For more accurate image reconstruction, we also need to consider dispersive 

effects of different kinds of walls and have to include multiple scattering effects to the 

Lippman-Schwinger equation. 
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APPENDIX A. SINGULAR VALUE DECOMPOSITION 

Let M N×Κ∈�  is a linear operator which maps vectors Nf ∈�  to vectors Md ∈� . 

We will consider two symmetric matrices ( )T N NΚ Κ ×  and ( )T M MΚΚ × . Since these 

matrices are square and symmetric, we can get eigenvectors and eigenvalues of each. If 

iλ  is the eigenvalue and if is the eigenvector of TΚ Κ . 

The eigen equation for TΚ Κ is 

T
i i if fλΚ Κ =                                                      (A.1) 

Applying the same method, we get the eigen equation for TΚΚ  

T
i i id dγΚΚ =                                                     (A.2) 

If we take the eigenvector if  of TΚ Κ , and the eigenvalue 0iλ ≠ , then we get vector 

0ifΚ ≠ , this can be proved here 

( ) ( ) ( ) ( )T T
i i i i i if f f fλ λΚΚ Κ = Κ Κ Κ = Κ = Κ                             (A.3) 

Hence ifΚ is an eigenvector of TΚΚ  and each eingenvalue 0iλ ≠  of  TΚ Κ  must be an 

eigenvalue of TΚΚ . Similarly, this is also true each eigenvalue 0iγ ≠  of  TΚΚ  must be 

an eigenvalue of TΚ Κ . 

If  there are r  non-zero eigenvalues of TΚ Κ (or TΚΚ ), where r m≤  and r n≤ , we can 

express it like this 

1 1

2 2

1 10 0

0 0

r r

r r

n m

λ γ
λ γ

λ γ
λ γ

λ γ

+ +

=
=

=
= =

= =

M

M M
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Therefore the linear equation is expressed 

Tf d d f= Κ = Κ                                               (A.4) 

Then we normalize eigenvectors  
T

T

d ff d
fd

Κ Κ
= =

ΚΚ
                                            (A.5) 

The singular values kσ of Κ  are defined by 

T
k k k k kf d σ λ γΚ = Κ = = =                                    (A.6) 

So equation (A.5) becomes for ,M NΚ ≤ .  

,T
k k k k k kd f f dσ σΚ = Κ =                                          (A.7) 

but for ,M NΚ > , the equation becomes  

0 1,kf for k r NΚ = = + L                                          (A.8) 

0 1,T
kd for k r MΚ = = + L                                         (A.9) 

On equation (A.7), we take k k kf dσΚ =  and multiply by T
kf  on both sides. Then it 

becomes 

1

r
T T

i i i
i

f dσ
=

Κ =∑                                                 (A.10) 

And the other one in equation (A.7) becomes 

1

r
T

i i i
i

d fσ
=

Κ =∑                                                  (A.11) 

We can write equation (A.11) in matrix form as  

1 1

1 2 2 2

0 0
0 0
0 0

f
d d f

σ
σ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Κ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

M M M L L

L L L

M M M O M M M

                        (A.12) 

or TDUFΚ =  

where, U  is a diagonal matrix of the singular values, and D  and F  consist of the 

eigenvectors corresponding to those singular values. f  and d  are the orthonomal vectors 

and called right singular vectors and left singular vectors respectively. 



 67

We can make the inverse of Κ  as 
1 1( )TDUF− −Κ =                                                 (A.13) 

We know TF  and D  are orthogonal matrices, because they are composed of 

eigenvectors which are orthogonal. Equation (A.13) becomes  
1 1 1 1( )TF U D− − − −Κ =                                              (A.14) 

1 1 TFU D− −Κ =                                                  (A.15) 

1U −  is a diagonal matrix composed of 1
σ

. Since singular values of Κ  are in the order of  

1 2 0rσ σ σ≥ ≥ ≥ >"                                             (A.16) 

elements in a matrix 1U −  will increase infinitely [10]. Hence, the norm of inverse 

mapping 1−Κ  also will increase. This is why we need a regularization method for the 

inverse imaging. 
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APPENDIX B. GREEN’S FUNCTION 

Green’s function satisfies a wave equation driven by a point source. 
2 2( ) ( ) ( )k r S rψ∇ + =                                              (B.1) 

To obtain a solution to wave equation need to seek the Green’s function that is the 

solution to the following equation. 
2 2( ) ( , ) ( )k G r r r rδ′ ′∇ + = − −                                        (B.2) 

If we let arbitrary source ( )S r  

( ) ( ) ( )S r S r r r drδ′ ′ ′= −∫                                           (B.3) 

Then we can write  

( ) ( , ) ( )r G r r S r drψ ′ ′ ′= −∫                                          (B.4) 

To find a solution of equation (B.2), solve it in spherical coordinates with the origin at r′  
2 2( ) ( ) ( ) ( ) ( ) ( )k G r r x y zδ δ δ δ∇ + = − = −                             (B.5) 

Due to the spherical symmetry of a point source, ( )G r  is also spherical symmetric. 

In spherical coordinates equation (B.2) becomes as 
2

2
2

1 ( ) ( )d rG k G r
r dr

δ+ = −                                         (B.6) 

Everywhere, except at 0r = , the equation is the same as the homogeneous equation 
2

2
2 ( ) ( ) 0d rG k rG

dr
+ =                                             (B.7) 

So the solution is shown below 

( )
ikr ikre eG r A B
r r

−

= +                                             (B.8) 

Since sources are absent at infinity, only an outgoing solution can exist.  

( )
ikreG r A
r

=                                                    (B.9) 

To find the constant A , substitute equation (B.9) into equation (B.2) and integrate 

equation (B.2) over a small volume. 
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2 1
ikr ikr

V V

Ae Aek
r r

∇⋅∇ + = −∫ ∫
� �

                                    (B.10) 

Since 24dV r drπ= , the second integral vanishes and the first integral is converted into a 

surface integral using Gauss’ Theorem 

2

0
lim 4 1

ikr

r

d Aer
dr r

π
→

= −                                         (B.11) 

 

Finally we get 1
4A π=  

Therefore, the Greens’ function G is 

( )
4

ik r reG r r
r rπ

′−

′− =
′−

                                            (B.12) 

Consequently, the final solution to equation (B.1) is 

( ) ( )
4

ik r r

V

er S r dr
r r

ψ
π

′−

′ ′= −
′−∫                                     (B.13) 
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APPENDIX C. FOURIER TRANSFORM IN 2-D 

When dealing with both linear and nonlinear systems, it is useful to break down a 

complicated input into more simple inputs. This process is well known as the Fourier 

Transform. The Fourier Transform of a complex-valued function g  of two independent 

variables x  and y  is defined by 

{ } 2 ( )( , ) x yi x yg g x y e dxdyπ ν ν
∞

− +

−∞

= ∫ ∫F                                    (C.1) 

Similarly, the Inverse Fourier Transform of a ( , )x yG ν ν  is defined as 

{ } 2 ( )1 ( , ) x yi x y
x y x yG G e d dπ ν νν ν ν ν

∞
+−

−∞

= ∫ ∫F                                (C.2) 

But all functions cannot be transformed from the spatial domain into Fourier domain. In 

order to be transformed, the function should satisfy “existence conditions” [20]. 

1. ‘ g ’ must be absolutely integrable over the infinite ( , )x y  plane. 

2. ‘ g ’ must have a finite number of discontinuities and a finite number of maxima 

and minima in any finite rectangle. 

3. ‘ g ’ must have no infinite discontinuities. 

There are a few useful properties of the Fourier Transform. These will provide the basic 

idea for the manipulation of the Fourier Transforms and can save time  solving Fourier 

problems. 

1. Linear Theorem : 

( ) ( ) ( )g k g kα β α β+ = +F F F                                                                         (C.3) 

2. Similarity Theorem 

If { }( , ) ( , )x yg x y G ν ν=F , then { } 1( , ) ( , )yxg ax by G
ab a b

νν
=F                      (C.4) 
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3. Shift Theorem : 

If { }( , ) ( , )x yg x y G ν ν=F , then { } 2 ( )( , ) ( , ) x yi a b
x yg x a y b G e π ν νν ν − +− − =F     (C.5) 

4. Parseval’s Theorem : 

If { }( , ) ( , )x yg x y G ν ν=F , then 2 2( , ) ( , )x y x yg x y dxdy G d dν ν ν ν
∞ ∞

−∞ −∞

=∫ ∫ ∫ ∫    (C.6) 

5. Convolution Theorem : 

If { }( , ) ( , )x yg x y G ν ν=F  and { }( , ) ( , )x yK x y KG ν ν=F , then 

    ( , ) ( , ) ( , ) ( , )x y x yg a b K x a y b dadb G Kν ν ν ν
∞

−∞

⎧ ⎫
− − =⎨ ⎬

⎩ ⎭
∫ ∫F                                   (C.7) 

6. Autocorrelation Theorem 

If { }( , ) ( , )x yg x y G ν ν=F , then  

            
2

( , ) *( , ) ( , )x yg a b g a x b y dadb G ν ν
∞

−∞

⎧ ⎫
− − =⎨ ⎬

⎩ ⎭
∫ ∫F                                 (C.8) 

similarly, { }2 2( , ) ( , ) *( , )x yg x y G a b G a b dadbν ν
∞

−∞

= − −∫ ∫F                        (C.9) 
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APPENDIX D. MATLAB CODES 

 %%%%%%%%%%%% Matlab code for material reflection %%%%%%%%%%%%% 
 
clear; 
% Calculating the Reflection for plane waves in various surface 
% Equations used from Chapter 5 
% Creating various index of refraction for different materials 
% Polystyrene foam, Quartz, Glass 
nm=[1.01 1.5 1.8]; 
% Lophira alata(wood), Tile, Sand 
% nm=[1.49 1.6 1.67]; 
% Skin, Body fluid 
% nm=[1.4 3.9]; 
 
% Thickness of the material 
L=0.5; 
c=3.0e8;     % Speed of light 
 
figure(1) 
 
    nu=linspace(1e11,5e12,100); 
    k=2*pi*nu./c; 
    num=(1-nm(1)^2)+(nm(1)^2-1)*exp(i*2*k*L*nm(1)); 
    den=(nm(1)+1)^2-((nm(1)-1)^2)*exp(i*2*k*L*nm(1)); 
    r=num./den; 
    R=r.*conj(r); 
    hold on 
    plot(nu,R,'-'); 
    gtext(sprintf('n=%2.2f',nm(1))); 
 
    num=(1-nm(2)^2)+(nm(2)^2-1)*exp(i*2*k*L*nm(2)); 
    den=(nm(2)+1)^2-((nm(2)-1)^2)*exp(i*2*k*L*nm(2)); 
    r=num./den; 
    R=r.*conj(r); 
    hold on 
    plot(nu,R,'-.'); 
    gtext(sprintf('n=%2.2f',nm(2))); 
     
    num=(1-nm(3)^2)+(nm(3)^2-1)*exp(i*2*k*L*nm(3)); 
    den=(nm(3)+1)^2-((nm(3)-1)^2)*exp(i*2*k*L*nm(3)); 
    r=num./den; 
    R=r.*conj(r); 
    hold on 
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    plot(nu,R,':'); 
    gtext(sprintf('n=%2.2f',nm(3))); 
     
hold off 
xlabel('frequency (\nu) Hz'); 
ylabel('Reflection'); 
title('Frequency vs Reflection from the dielectric') 
gtext(sprintf('L = %1.2f',L)); 
 
%%%%%%%%%%% Matlab code for Born and Rytov approximations %%%%%%%% 
 
clear; 
%parameters 
nu=940e9;                  % Frequency of the wave propagation. 
lambda=3.0e8/nu;      % In terms of wave length. 
%k=2*pi/lambda;       % Magnitude of the propagation vector. 
k=3000; 
n=1.67;                       % Material index of refraction. 
L=0.5;                        % Thickness of the wall. 
Z=2;                           % Measurement plane at Z=constant. Adjust accordingly 
                                   % depending on position of the receiver. 
A=1;                           % Amplitude of the incident plane wave. 
signal=0; 
noise=0; 
 
% Defining Coordinate Systems in the spatial frequency domain. 
ii=10;                         % Spatial frequencies for meshgrid input. 
fb=ii;                          % Frequency band. 
%fn=fb; 
fn=2*fb;                    % Nyquist rate. 
j=1/fn;                       % Separation must be at least this distance to prevent aliasing. 
[fx,fy]=meshgrid(-ii:j:ii,-ii:j:ii);              % Creating coordinate system. 
 
% Defining the Green's function. 
x0=0; y0=0; z0=-3;                       % Set this position accordingly to the problem. 
N=sqrt(k^2-(2*pi*fx).^2-(2*pi*fy).^2);            % Look in chapter 4 for reference. 
Nm=sqrt((n*k)^2-(2*pi*fx).^2-(2*pi*fy).^2);   % Look in chapter 4 for reference. 
num=4*N.*Nm*exp(-i*N*L);                           % Numerator of the equation. 
den=(Nm+N).^2.*exp(-i*Nm*L)-(Nm-N).^2.*exp(i*Nm*L);     % Denominator of the 
equation. 
% Required terms for taking Fourier transform 
A0=exp(-i*2*pi*fx*x0).*exp(-i*2*pi*fy*y0); 
G=(num./den).*exp(i*N*Z).*exp(i*N*z0)./(2*N).*A0;  % Transmission Green's function. 
 
%% Synthetic Data Generation  
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% Transmittance for a plane wave through a given media 
t=4*n*exp(-i*k*L)./((n+1)^2*exp(-i*n*k*L)-(n-1)^2*exp(i*n*k*L)); 
 
% scattering Points in the spatial frequency domain. 
x1=-1;  y1=-1;  z1=-1; 
x2=-1;  y2=1;   z2=-3; 
x3=0;   y3=0;   z3=-5; 
x4=1;   y4=1;   z4=-1.3; 
x5=1;   y5=-1;  z5=-2.2; 
 
% Incident field after the penetration of the media. 
E1=t*A*exp(-i*k*z1); 
E2=t*A*exp(-i*k*z2); 
E3=t*A*exp(-i*k*z3); 
E4=t*A*exp(-i*k*z4); 
E5=t*A*exp(-i*k*z5); 
  
% Position of the scatter points in frequency domain for the given 
% measurement plane at Z=constant 
% Since the scatter points are in terms of dirac delta functions, 
% the field measurement would become the summation of the Green's function 
% and the incident wave after performing the Rytov Approximation 
G1=(num./den).*exp(i*N*Z).*exp(i*N*z1)./(2*N); 
G2=(num./den).*exp(i*N*Z).*exp(i*N*z2)./(2*N); 
G3=(num./den).*exp(i*N*Z).*exp(i*N*z3)./(2*N); 
G4=(num./den).*exp(i*N*Z).*exp(i*N*z4)./(2*N); 
G5=(num./den).*exp(i*N*Z).*exp(i*N*z5)./(2*N); 
 
% Required terms for taking Fourier transform 
A1=exp(-i*2*pi*fx*x1).*exp(-i*2*pi*fy*y1); 
A2=exp(-i*2*pi*fx*x2).*exp(-i*2*pi*fy*y2); 
A3=exp(-i*2*pi*fx*x3).*exp(-i*2*pi*fy*y3); 
A4=exp(-i*2*pi*fx*x4).*exp(-i*2*pi*fy*y4); 
A5=exp(-i*2*pi*fx*x5).*exp(-i*2*pi*fy*y5); 
 
%% Generating Data with Born approximation 
D=(E1.*G1.*A1+E2.*G2.*A2+E3.*G3.*A3+E4.*G4.*A4+E5.*G5.*A5); 
 
%% Generating Data with Rytov approximation 
DD=E1.*(exp(G1.*A1)-1)+E2.*(exp(G2.*A2)-1)+E3.*(exp(G3.*A3)-
1)+E4.*(exp(G4.*A4)-1)+E5.*(exp(G5.*A5)-1); 
 
%% Generating differences by subtracting Born with Rytov 
% Generating Data with Born 
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B=(E1.*G1+E2.*G2+E3.*G3+E4.*G4+E5.*G5); 
 
% Generating Data with Rytov 
R=E1.*(exp(G1)-1)+E2.*(exp(G2)-1)+E3.*(exp(G3)-1)+E4.*(exp(G4)-
1)+E5.*(exp(G5)-1); 
 
Ext=(B-R).*(A1+A2+A3+A4+A5);        % Data with extra terms 
 
% Setting matrix dimension 
[MM,NN]=size(D); 
D=D(1:MM,1:NN);         % Change matrix dimension if warranted. 
 
% Converting bin numbers to real axis numbers in spatial domain(meters). 
% Range has to be up to Nyquist frequency. 
ax=linspace(-fn/2,fn/2,length(D)); 
%% End of Data Generation  
 
figure(1)         
d1=ifft2(D);            % Data in the spatial domain. 
d1=ifftshift(d1); 
 
mesh(ax,ax,abs(d1));    % Amplitude of field scattered from 5 points using Born 
view(-70,20) 
 
figure(2)         
d2=ifft2(DD);            % Data in the spatial domain. 
d2=ifftshift(d2); 
 
mesh(ax,ax,abs(d2));    % Amplitude of field scattered from 5 points using Rtov 
view(-70,20) 
 
figure(3)        
d3=ifft2(Ext);          % Data in the spatial domain. 
d3=ifftshift(d3); 
 
mesh(ax,ax,abs(d3));    % Differences between Born and Rytov approximations 
view(-70,20) 
 
%%%%%%%%%%% Matlab code for regularization mathods %%%%%%%%%%%% 
 
clear; 
%parameters 
nu=940e9;             % Frequency of the wave propagation. 
lambda=3.0e8/nu;      % In terms of wave length. 
%k=2*pi/lambda;       % Magnitude of the propagation vector. 
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k=3000; 
n=1.67;                                 % Material index of refraction. 
L=0.5;                                   % Thickness of the wall. 
Z=2;                                      % Measurement plane at Z=constant. Adjust accordingly 
                                              % depending on position of the receiver. 
A=1;                                      % Amplitude of the incident plane wave. 
signal=0; 
noise=0; 
 
% Defining Coordinate Systems in the spatial frequency domain. 
ii=10;                                    % Spatial frequencies for meshgrid input. 
fb=ii;                                     % Frequency band. 
fn=2*fb;                               % Nyquist rate. 
j=1/fn;                         % Separation must be at least this distance to prevent aliasing. 
[fx,fy]=meshgrid(-ii:j:ii,-ii:j:ii);                    % Creating coordinate system. 
 
% Defining the Green's function. 
x0=0; y0=0; z0=-3;                             % Set this position accordingly to the problem. 
N=sqrt(k^2-(2*pi*fx).^2-(2*pi*fy).^2);                 % Look in chapter 4 for reference. 
Nm=sqrt((n*k)^2-(2*pi*fx).^2-(2*pi*fy).^2);        % Look in chapter 4 for reference. 
num=4*N.*Nm*exp(-i*N*L);                                % Numerator of the equation. 
den=(Nm+N).^2.*exp(-i*Nm*L)-(Nm-N).^2.*exp(i*Nm*L);       % Denominator of the 
equation. 
 
% Required terms for taking Fourier transform 
A0=exp(-i*2*pi*fx*x0).*exp(-i*2*pi*fy*y0); 
G=(num./den).*exp(i*N*Z).*exp(i*N*z0)./(2*N).*A0;  % Transmission Green's function. 
 
% Synthetic Data Generation  
% Transmittance for a plane wave through a given media 
t=4*n*exp(-i*k*L)./((n+1)^2*exp(-i*n*k*L)-(n-1)^2*exp(i*n*k*L)); 
 
% scattering Points in the spatial frequency domain. 
x1=-1;  y1=-1;  z1=-1; 
x2=-1;  y2=1;   z2=-3; 
x3=0;   y3=0;   z3=-5; 
x4=1;   y4=1;   z4=-1.3; 
x5=1;   y5=-1;  z5=-2.2; 
 
% Incident field after the penetration of the media. 
E1=t*A*exp(-i*k*z1); 
E2=t*A*exp(-i*k*z2); 
E3=t*A*exp(-i*k*z3); 
E4=t*A*exp(-i*k*z4); 
E5=t*A*exp(-i*k*z5); 
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% Position of the scatter points in frequency domain for the given 
% measurement plane at Z=constant 
% Since the scatter points are in terms of dirac delta functions, 
% the field measurement would become the summation of the Green's function 
% and the incident wave after performing the Rytov Approximation 
G1=(num./den).*exp(i*N*Z).*exp(i*N*z1)./(2*N); 
G2=(num./den).*exp(i*N*Z).*exp(i*N*z2)./(2*N); 
G3=(num./den).*exp(i*N*Z).*exp(i*N*z3)./(2*N); 
G4=(num./den).*exp(i*N*Z).*exp(i*N*z4)./(2*N); 
G5=(num./den).*exp(i*N*Z).*exp(i*N*z5)./(2*N); 
 
% Required terms for taking Fourier transform 
A1=exp(-i*2*pi*fx*x1).*exp(-i*2*pi*fy*y1); 
A2=exp(-i*2*pi*fx*x2).*exp(-i*2*pi*fy*y2); 
A3=exp(-i*2*pi*fx*x3).*exp(-i*2*pi*fy*y3); 
A4=exp(-i*2*pi*fx*x4).*exp(-i*2*pi*fy*y4); 
A5=exp(-i*2*pi*fx*x5).*exp(-i*2*pi*fy*y5); 
 
% Generating Data 
D=E1.*(exp(G1.*A1)-1)+E2.*(exp(G2.*A2)-1)+E3.*(exp(G3.*A3)-
1)+E4.*(exp(G4.*A4)-1)+E5.*(exp(G5.*A5)-1); 
 
% Setting matrix dimension 
[MM,NN]=size(D); 
D=D(1:MM,1:NN);                                   % Change matrix dimension if warranted. 
 
% Converting bin numbers to real axis numbers in spatial domain(meters). 
% Range has to be up to Nyquist frequency. 
ax=linspace(-fn/2,fn/2,length(D)); 
n=(randn(MM,NN))+i*(randn(MM,NN));     % noise in complex values in the frequency 
domain 
 
% set the signal to noise in dB 
SNR=-20; 
S=abs(D.*conj(D)); 
NO=abs(n.*conj(n)); 
signal=sum(sum(S)); 
noise=sum(sum(NO)); 
factor=sqrt((signal/noise)*10^(-SNR/10)); 
n=n*factor; 
d=D+n;                                                             % data with noise in the frequency domain 
% End of (noisy) Data Generation  
 
figure(2)                                                      % Data corrupted with noise in spatial domain. 



 79

d1=ifft2(d);                                                 % Data in the spatial domain. 
d1=ifftshift(d1); 
 
imagesc(ax,ax,abs(d1)); 
colormap (1-gray); 
%grid on 
axis([-2 2 -2 2]) 
title(sprintf('Noisy Data with SNR= %3.1f dB',SNR)) 
 
% Tikhonov Regularization 
[u,s,v]=svd(G); 
alpha=4.6;                                                  % Regularization parameter 
Reg=inv(alpha*eye(size(G'*G))+G'*G)*G'; 
 
figure(3) 
dd=Reg.*d; 
dd1=ifft2(dd);                                            % Data in the spatial domain 
dd1=ifftshift(dd1); 
imagesc(ax,ax,abs(dd1)); 
colormap (1-gray); 
%grid on 
axis([-2 2 -2 2]) 
title(sprintf('Tikhonov Regularization alpha= %4.1f and SNR=%3.1f dB',alpha,SNR)) 
 
% Truncated SVD Method 
kappa=0.34;                                          % Parameter for truncation of singular values 
[u,s,v]=svd(G); 
 
% inverse of the singular value matrix 
sinvlu=zeros(NN,MM); 
for j=1:rank(s) 
    if 1/s(j,j) < kappa 
        sinvlu(j,j)=1/s(j,j); 
    else 
        sinvlu(j,j)=0; 
    end 
end 
 
td=(v*sinvlu*u').*d; 
TD=ifft2(td);                                          % Data in the spatial domain 
TD=ifftshift(TD); 
 
figure(4) 
imagesc(ax,ax,abs(TD)); 
colormap (1-gray); 
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axis([-2 2 -2 2]) 
title(sprintf('TSVD w/ truncation at kappa= %3.2f \n SNR=%3.1f dB',kappa,SNR)) 
 
%%%%%%%%%%%%%% Matlab code for L-curve plot %%%%%%%%%%%%%% 
 
clear; 
%parameters 
nu=940e9;                                         % Frequency of the wave propagation. 
lambda=3.0e8/nu;                             % In terms of wave length. 
%k=2*pi/lambda;                             % Magnitude of the propagation vector. 
k=3000; 
n=1.67;                                             % Material index of refraction. 
L=0.5;                                              % Thickness of the wall. 
Z=2;                                          % Measurement plane at Z=constant. Adjust accordingly 
                                                  % depending on position of the receiver. 
A=1;                                         % Amplitude of the incident plane wave. 
signal=0; 
noise=0; 
 
% Defining Coordinate Systems in the spatial frequency domain. 
ii=10;                                   % Spatial frequencies for meshgrid input. 
fb=ii;                                    % Frequency band. 
fn=2*fb;                               % Nyquist rate. 
j=1/fn;                                  % Separation must be at least this distance to prevent aliasing. 
[fx,fy]=meshgrid(-ii:j:ii,-ii:j:ii);                                             % Creating coordinate system. 
 
% Defining the Green's function. 
x0=0; y0=0; z0=-3;                                      % Set this position accordingly to the problem. 
N=sqrt(k^2-(2*pi*fx).^2-(2*pi*fy).^2);                         % Look in chapter 4 for reference. 
Nm=sqrt((n*k)^2-(2*pi*fx).^2-(2*pi*fy).^2);               % Look in chapter 4 for reference. 
num=4*N.*Nm*exp(-i*N*L);                                       % Numerator of the equation. 
den=(Nm+N).^2.*exp(-i*Nm*L)-(Nm-N).^2.*exp(i*Nm*L);         % Denominator of the 
equation. 
 
% Required terms for taking Fourier transform 
A0=exp(-i*2*pi*fx*x0).*exp(-i*2*pi*fy*y0); 
 
% Synthetic Data Generation  
% Transmittance for a plane wave through a given media 
t=4*n*exp(-i*k*L)./((n+1)^2*exp(-i*n*k*L)-(n-1)^2*exp(i*n*k*L)); 
 
% scattering Points in the spatial frequency domain. 
x1=-1;  y1=-1;  z1=-1; 
x2=-1;  y2=1;   z2=-3; 
x3=0;   y3=0;   z3=-5; 
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x4=1;   y4=1;   z4=-1.3; 
x5=1;   y5=-1;  z5=-2.2; 
 
% Incident field after the penetration of the media. 
E1=t*A*exp(-i*k*z1); 
E2=t*A*exp(-i*k*z2); 
E3=t*A*exp(-i*k*z3); 
E4=t*A*exp(-i*k*z4); 
E5=t*A*exp(-i*k*z5); 
  
% Position of the scatter points in frequency domain for the given 
% measurement plane at Z=constant 
% Since the scatter points are in terms of dirac delta functions, 
% the field measurement would become the summation of the Green's function 
% and the incident wave after performing the Rytov Approximation 
G1=(num./den).*exp(i*N*Z).*exp(i*N*z1)./(2*N); 
G2=(num./den).*exp(i*N*Z).*exp(i*N*z2)./(2*N); 
G3=(num./den).*exp(i*N*Z).*exp(i*N*z3)./(2*N); 
G4=(num./den).*exp(i*N*Z).*exp(i*N*z4)./(2*N); 
G5=(num./den).*exp(i*N*Z).*exp(i*N*z5)./(2*N); 
 
% Required terms for taking Fourier transform 
A1=exp(-i*2*pi*fx*x1).*exp(-i*2*pi*fy*y1); 
A2=exp(-i*2*pi*fx*x2).*exp(-i*2*pi*fy*y2); 
A3=exp(-i*2*pi*fx*x3).*exp(-i*2*pi*fy*y3); 
A4=exp(-i*2*pi*fx*x4).*exp(-i*2*pi*fy*y4); 
A5=exp(-i*2*pi*fx*x5).*exp(-i*2*pi*fy*y5); 
 
G=G1*A1+G2*A2+G3*A3+G4*A4+G5*A5; 
 
% Generating Data 
D=E1.*(exp(G1.*A1)-1)+E2.*(exp(G2.*A2)-1)+E3.*(exp(G3.*A3)-
1)+E4.*(exp(G4.*A4)-1)+E5.*(exp(G5.*A5)-1); 
 
% Setting matrix dimension 
[MM,NN]=size(D); 
D=D(1:MM,1:NN);                                          % Change matrix dimension if warranted. 
 
% Converting bin numbers to real axis numbers in spatial domain(meters). 
% Range has to be up to Nyquist frequency. 
ax=linspace(-fn/2,fn/2,length(D)); 
no=(randn(MM,NN))+i*(randn(MM,NN));    % noise in complex values in the frequency 
domain 
 
% set the signal to noise in dB 
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SNR=-20; 
S=abs(D.*conj(D)); 
NO=abs(no.*conj(no)); 
signal=sum(sum(S)); 
noise=sum(sum(NO)); 
factor=sqrt((signal/noise)*10^(-SNR/10)); 
no=no*factor; 
d=D+no;     % data with noise in the frequency domain 
% End of (noisy) Data Generation  
 
% Tikhonov Regularization 
[u,s,v]=svd(G); 
 
for alpha=linspace(10^-2,10^2,1000)                      % Range of Regularization parameters 
  Reg=inv(alpha*eye(size(G'*G))+G'*G)*G'*d;     % Regularized solution 
  sol=norm(eye(size(G'*G))*Reg);                           % Solution norm 
  res=norm(G'*G*Reg-G'*d);                                   % Residual norm 
   
  figure(3) 
  loglog(res,sol,'-o'); 
  hold on 
  title('L-curve for Tikhonov Regularization'); 
  xlabel('Residual norm'); 
  ylabel('Solution norm'); 
  figure(4) 
  plot(alpha,res); 
  hold on 
  title('alpha VS residual norm'); 
  xlabel('alpha'); 
  ylabel('Residual norm'); 
   
end 
 
title('L-curve for Tikhonov Regularization') 
xlabel('Residual norm'); 
ylabel('Solution norm'); 
axis([10^-4 10^4 10^0 10^8]) 
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